table of contents
nrm2(3) | Library Functions Manual | nrm2(3) |
NAME¶
nrm2 - nrm2: || x ||_2
SYNOPSIS¶
Functions¶
real(wp) function DNRM2 (n, x, incx)
DNRM2 real(wp) function DZNRM2 (n, x, incx)
DZNRM2 real(wp) function SCNRM2 (n, x, incx)
SCNRM2 real(wp) function SNRM2 (n, x, incx)
SNRM2
Detailed Description¶
Function Documentation¶
real(wp) function DNRM2 (integer n, real(wp), dimension(*) x, integer incx)¶
DNRM2
Purpose:
!> !> DNRM2 returns the euclidean norm of a vector via the function !> name, so that !> !> DNRM2 := sqrt( x'*x ) !>
Parameters
N
!> N is INTEGER !> number of elements in input vector(s) !>
X
!> X is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) ) !>
INCX
!> INCX is INTEGER, storage spacing between elements of X !> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n !> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n !> If INCX = 0, x isn't a vector so there is no need to call !> this subroutine. If you call it anyway, it will count x(1) !> in the vector norm N times. !>
Author
Edward Anderson, Lockheed Martin
Date
August 2016
Contributors:
Weslley Pereira, University of Colorado Denver, USA
Further Details:
!> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Blue, James L. (1978) !> A Portable Fortran Program to Find the Euclidean Norm of a Vector !> ACM Trans Math Softw 4:15--23 !> https://doi.org/10.1145/355769.355771 !> !>
Definition at line 88 of file dnrm2.f90.
real(wp) function DZNRM2 (integer n, complex(wp), dimension(*) x, integer incx)¶
DZNRM2
Purpose:
!> !> DZNRM2 returns the euclidean norm of a vector via the function !> name, so that !> !> DZNRM2 := sqrt( x**H*x ) !>
Parameters
N
!> N is INTEGER !> number of elements in input vector(s) !>
X
!> X is COMPLEX*16 array, dimension (N) !> complex vector with N elements !>
INCX
!> INCX is INTEGER, storage spacing between elements of X !> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n !> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n !> If INCX = 0, x isn't a vector so there is no need to call !> this subroutine. If you call it anyway, it will count x(1) !> in the vector norm N times. !>
Author
Edward Anderson, Lockheed Martin
Date
August 2016
Contributors:
Weslley Pereira, University of Colorado Denver, USA
Further Details:
!> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Blue, James L. (1978) !> A Portable Fortran Program to Find the Euclidean Norm of a Vector !> ACM Trans Math Softw 4:15--23 !> https://doi.org/10.1145/355769.355771 !> !>
Definition at line 89 of file dznrm2.f90.
real(wp) function SCNRM2 (integer n, complex(wp), dimension(*) x, integer incx)¶
SCNRM2
Purpose:
!> !> SCNRM2 returns the euclidean norm of a vector via the function !> name, so that !> !> SCNRM2 := sqrt( x**H*x ) !>
Parameters
N
!> N is INTEGER !> number of elements in input vector(s) !>
X
!> X is COMPLEX array, dimension (N) !> complex vector with N elements !>
INCX
!> INCX is INTEGER, storage spacing between elements of X !> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n !> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n !> If INCX = 0, x isn't a vector so there is no need to call !> this subroutine. If you call it anyway, it will count x(1) !> in the vector norm N times. !>
Author
Edward Anderson, Lockheed Martin
Date
August 2016
Contributors:
Weslley Pereira, University of Colorado Denver, USA
Further Details:
!> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Blue, James L. (1978) !> A Portable Fortran Program to Find the Euclidean Norm of a Vector !> ACM Trans Math Softw 4:15--23 !> https://doi.org/10.1145/355769.355771 !> !>
Definition at line 89 of file scnrm2.f90.
real(wp) function SNRM2 (integer n, real(wp), dimension(*) x, integer incx)¶
SNRM2
Purpose:
!> !> SNRM2 returns the euclidean norm of a vector via the function !> name, so that !> !> SNRM2 := sqrt( x'*x ). !>
Parameters
N
!> N is INTEGER !> number of elements in input vector(s) !>
X
!> X is REAL array, dimension ( 1 + ( N - 1 )*abs( INCX ) ) !>
INCX
!> INCX is INTEGER, storage spacing between elements of X !> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n !> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n !> If INCX = 0, x isn't a vector so there is no need to call !> this subroutine. If you call it anyway, it will count x(1) !> in the vector norm N times. !>
Author
Edward Anderson, Lockheed Martin
Date
August 2016
Contributors:
Weslley Pereira, University of Colorado Denver, USA
Further Details:
!> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Blue, James L. (1978) !> A Portable Fortran Program to Find the Euclidean Norm of a Vector !> ACM Trans Math Softw 4:15--23 !> https://doi.org/10.1145/355769.355771 !> !>
Definition at line 88 of file snrm2.f90.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |