table of contents
laswp(3) | Library Functions Manual | laswp(3) |
NAME¶
laswp - laswp: swap permutation
SYNOPSIS¶
Functions¶
subroutine CLASWP (n, a, lda, k1, k2, ipiv, incx)
CLASWP performs a series of row interchanges on a general rectangular
matrix. subroutine DLASWP (n, a, lda, k1, k2, ipiv, incx)
DLASWP performs a series of row interchanges on a general rectangular
matrix. subroutine SLASWP (n, a, lda, k1, k2, ipiv, incx)
SLASWP performs a series of row interchanges on a general rectangular
matrix. subroutine ZLASWP (n, a, lda, k1, k2, ipiv, incx)
ZLASWP performs a series of row interchanges on a general rectangular
matrix.
Detailed Description¶
Function Documentation¶
subroutine CLASWP (integer n, complex, dimension( lda, * ) a, integer lda, integer k1, integer k2, integer, dimension( * ) ipiv, integer incx)¶
CLASWP performs a series of row interchanges on a general rectangular matrix.
Purpose:
!> !> CLASWP performs a series of row interchanges on the matrix A. !> One row interchange is initiated for each of rows K1 through K2 of A. !>
Parameters
!> N is INTEGER !> The number of columns of the matrix A. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the matrix of column dimension N to which the row !> interchanges will be applied. !> On exit, the permuted matrix. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. !>
K1
!> K1 is INTEGER !> The first element of IPIV for which a row interchange will !> be done. !>
K2
!> K2 is INTEGER !> (K2-K1+1) is the number of elements of IPIV for which a row !> interchange will be done. !>
IPIV
!> IPIV is INTEGER array, dimension (K1+(K2-K1)*abs(INCX)) !> The vector of pivot indices. Only the elements in positions !> K1 through K1+(K2-K1)*abs(INCX) of IPIV are accessed. !> IPIV(K1+(K-K1)*abs(INCX)) = L implies rows K and L are to be !> interchanged. !>
INCX
!> INCX is INTEGER !> The increment between successive values of IPIV. If INCX !> is negative, the pivots are applied in reverse order. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Modified by !> R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA !>
Definition at line 114 of file claswp.f.
subroutine DLASWP (integer n, double precision, dimension( lda, * ) a, integer lda, integer k1, integer k2, integer, dimension( * ) ipiv, integer incx)¶
DLASWP performs a series of row interchanges on a general rectangular matrix.
Purpose:
!> !> DLASWP performs a series of row interchanges on the matrix A. !> One row interchange is initiated for each of rows K1 through K2 of A. !>
Parameters
!> N is INTEGER !> The number of columns of the matrix A. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the matrix of column dimension N to which the row !> interchanges will be applied. !> On exit, the permuted matrix. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. !>
K1
!> K1 is INTEGER !> The first element of IPIV for which a row interchange will !> be done. !>
K2
!> K2 is INTEGER !> (K2-K1+1) is the number of elements of IPIV for which a row !> interchange will be done. !>
IPIV
!> IPIV is INTEGER array, dimension (K1+(K2-K1)*abs(INCX)) !> The vector of pivot indices. Only the elements in positions !> K1 through K1+(K2-K1)*abs(INCX) of IPIV are accessed. !> IPIV(K1+(K-K1)*abs(INCX)) = L implies rows K and L are to be !> interchanged. !>
INCX
!> INCX is INTEGER !> The increment between successive values of IPIV. If INCX !> is negative, the pivots are applied in reverse order. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Modified by !> R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA !>
Definition at line 114 of file dlaswp.f.
subroutine SLASWP (integer n, real, dimension( lda, * ) a, integer lda, integer k1, integer k2, integer, dimension( * ) ipiv, integer incx)¶
SLASWP performs a series of row interchanges on a general rectangular matrix.
Purpose:
!> !> SLASWP performs a series of row interchanges on the matrix A. !> One row interchange is initiated for each of rows K1 through K2 of A. !>
Parameters
!> N is INTEGER !> The number of columns of the matrix A. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the matrix of column dimension N to which the row !> interchanges will be applied. !> On exit, the permuted matrix. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. !>
K1
!> K1 is INTEGER !> The first element of IPIV for which a row interchange will !> be done. !>
K2
!> K2 is INTEGER !> (K2-K1+1) is the number of elements of IPIV for which a row !> interchange will be done. !>
IPIV
!> IPIV is INTEGER array, dimension (K1+(K2-K1)*abs(INCX)) !> The vector of pivot indices. Only the elements in positions !> K1 through K1+(K2-K1)*abs(INCX) of IPIV are accessed. !> IPIV(K1+(K-K1)*abs(INCX)) = L implies rows K and L are to be !> interchanged. !>
INCX
!> INCX is INTEGER !> The increment between successive values of IPIV. If INCX !> is negative, the pivots are applied in reverse order. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Modified by !> R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA !>
Definition at line 114 of file slaswp.f.
subroutine ZLASWP (integer n, complex*16, dimension( lda, * ) a, integer lda, integer k1, integer k2, integer, dimension( * ) ipiv, integer incx)¶
ZLASWP performs a series of row interchanges on a general rectangular matrix.
Purpose:
!> !> ZLASWP performs a series of row interchanges on the matrix A. !> One row interchange is initiated for each of rows K1 through K2 of A. !>
Parameters
!> N is INTEGER !> The number of columns of the matrix A. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the matrix of column dimension N to which the row !> interchanges will be applied. !> On exit, the permuted matrix. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. !>
K1
!> K1 is INTEGER !> The first element of IPIV for which a row interchange will !> be done. !>
K2
!> K2 is INTEGER !> (K2-K1+1) is the number of elements of IPIV for which a row !> interchange will be done. !>
IPIV
!> IPIV is INTEGER array, dimension (K1+(K2-K1)*abs(INCX)) !> The vector of pivot indices. Only the elements in positions !> K1 through K1+(K2-K1)*abs(INCX) of IPIV are accessed. !> IPIV(K1+(K-K1)*abs(INCX)) = L implies rows K and L are to be !> interchanged. !>
INCX
!> INCX is INTEGER !> The increment between successive values of IPIV. If INCX !> is negative, the pivots are applied in reverse order. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Modified by !> R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA !>
Definition at line 114 of file zlaswp.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |