Scroll to navigation

laswp(3) Library Functions Manual laswp(3)

NAME

laswp - laswp: swap permutation

SYNOPSIS

Functions


subroutine CLASWP (n, a, lda, k1, k2, ipiv, incx)
CLASWP performs a series of row interchanges on a general rectangular matrix. subroutine DLASWP (n, a, lda, k1, k2, ipiv, incx)
DLASWP performs a series of row interchanges on a general rectangular matrix. subroutine SLASWP (n, a, lda, k1, k2, ipiv, incx)
SLASWP performs a series of row interchanges on a general rectangular matrix. subroutine ZLASWP (n, a, lda, k1, k2, ipiv, incx)
ZLASWP performs a series of row interchanges on a general rectangular matrix.

Detailed Description

Function Documentation

subroutine CLASWP (integer n, complex, dimension( lda, * ) a, integer lda, integer k1, integer k2, integer, dimension( * ) ipiv, integer incx)

CLASWP performs a series of row interchanges on a general rectangular matrix.

Purpose:

!>
!> CLASWP performs a series of row interchanges on the matrix A.
!> One row interchange is initiated for each of rows K1 through K2 of A.
!> 

Parameters

N

!>          N is INTEGER
!>          The number of columns of the matrix A.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the matrix of column dimension N to which the row
!>          interchanges will be applied.
!>          On exit, the permuted matrix.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!> 

K1

!>          K1 is INTEGER
!>          The first element of IPIV for which a row interchange will
!>          be done.
!> 

K2

!>          K2 is INTEGER
!>          (K2-K1+1) is the number of elements of IPIV for which a row
!>          interchange will be done.
!> 

IPIV

!>          IPIV is INTEGER array, dimension (K1+(K2-K1)*abs(INCX))
!>          The vector of pivot indices. Only the elements in positions
!>          K1 through K1+(K2-K1)*abs(INCX) of IPIV are accessed.
!>          IPIV(K1+(K-K1)*abs(INCX)) = L implies rows K and L are to be
!>          interchanged.
!> 

INCX

!>          INCX is INTEGER
!>          The increment between successive values of IPIV. If INCX
!>          is negative, the pivots are applied in reverse order.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  Modified by
!>   R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
!> 

Definition at line 114 of file claswp.f.

subroutine DLASWP (integer n, double precision, dimension( lda, * ) a, integer lda, integer k1, integer k2, integer, dimension( * ) ipiv, integer incx)

DLASWP performs a series of row interchanges on a general rectangular matrix.

Purpose:

!>
!> DLASWP performs a series of row interchanges on the matrix A.
!> One row interchange is initiated for each of rows K1 through K2 of A.
!> 

Parameters

N

!>          N is INTEGER
!>          The number of columns of the matrix A.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the matrix of column dimension N to which the row
!>          interchanges will be applied.
!>          On exit, the permuted matrix.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!> 

K1

!>          K1 is INTEGER
!>          The first element of IPIV for which a row interchange will
!>          be done.
!> 

K2

!>          K2 is INTEGER
!>          (K2-K1+1) is the number of elements of IPIV for which a row
!>          interchange will be done.
!> 

IPIV

!>          IPIV is INTEGER array, dimension (K1+(K2-K1)*abs(INCX))
!>          The vector of pivot indices. Only the elements in positions
!>          K1 through K1+(K2-K1)*abs(INCX) of IPIV are accessed.
!>          IPIV(K1+(K-K1)*abs(INCX)) = L implies rows K and L are to be
!>          interchanged.
!> 

INCX

!>          INCX is INTEGER
!>          The increment between successive values of IPIV. If INCX
!>          is negative, the pivots are applied in reverse order.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  Modified by
!>   R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
!> 

Definition at line 114 of file dlaswp.f.

subroutine SLASWP (integer n, real, dimension( lda, * ) a, integer lda, integer k1, integer k2, integer, dimension( * ) ipiv, integer incx)

SLASWP performs a series of row interchanges on a general rectangular matrix.

Purpose:

!>
!> SLASWP performs a series of row interchanges on the matrix A.
!> One row interchange is initiated for each of rows K1 through K2 of A.
!> 

Parameters

N

!>          N is INTEGER
!>          The number of columns of the matrix A.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          On entry, the matrix of column dimension N to which the row
!>          interchanges will be applied.
!>          On exit, the permuted matrix.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!> 

K1

!>          K1 is INTEGER
!>          The first element of IPIV for which a row interchange will
!>          be done.
!> 

K2

!>          K2 is INTEGER
!>          (K2-K1+1) is the number of elements of IPIV for which a row
!>          interchange will be done.
!> 

IPIV

!>          IPIV is INTEGER array, dimension (K1+(K2-K1)*abs(INCX))
!>          The vector of pivot indices. Only the elements in positions
!>          K1 through K1+(K2-K1)*abs(INCX) of IPIV are accessed.
!>          IPIV(K1+(K-K1)*abs(INCX)) = L implies rows K and L are to be
!>          interchanged.
!> 

INCX

!>          INCX is INTEGER
!>          The increment between successive values of IPIV. If INCX
!>          is negative, the pivots are applied in reverse order.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  Modified by
!>   R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
!> 

Definition at line 114 of file slaswp.f.

subroutine ZLASWP (integer n, complex*16, dimension( lda, * ) a, integer lda, integer k1, integer k2, integer, dimension( * ) ipiv, integer incx)

ZLASWP performs a series of row interchanges on a general rectangular matrix.

Purpose:

!>
!> ZLASWP performs a series of row interchanges on the matrix A.
!> One row interchange is initiated for each of rows K1 through K2 of A.
!> 

Parameters

N

!>          N is INTEGER
!>          The number of columns of the matrix A.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the matrix of column dimension N to which the row
!>          interchanges will be applied.
!>          On exit, the permuted matrix.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!> 

K1

!>          K1 is INTEGER
!>          The first element of IPIV for which a row interchange will
!>          be done.
!> 

K2

!>          K2 is INTEGER
!>          (K2-K1+1) is the number of elements of IPIV for which a row
!>          interchange will be done.
!> 

IPIV

!>          IPIV is INTEGER array, dimension (K1+(K2-K1)*abs(INCX))
!>          The vector of pivot indices. Only the elements in positions
!>          K1 through K1+(K2-K1)*abs(INCX) of IPIV are accessed.
!>          IPIV(K1+(K-K1)*abs(INCX)) = L implies rows K and L are to be
!>          interchanged.
!> 

INCX

!>          INCX is INTEGER
!>          The increment between successive values of IPIV. If INCX
!>          is negative, the pivots are applied in reverse order.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  Modified by
!>   R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
!> 

Definition at line 114 of file zlaswp.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK