Scroll to navigation

lasd5(3) Library Functions Manual lasd5(3)

NAME

lasd5 - lasd5: D&C step: secular equation, 2x2

SYNOPSIS

Functions


subroutine DLASD5 (i, d, z, delta, rho, dsigma, work)
DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc. subroutine SLASD5 (i, d, z, delta, rho, dsigma, work)
SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.

Detailed Description

Function Documentation

subroutine DLASD5 (integer i, double precision, dimension( 2 ) d, double precision, dimension( 2 ) z, double precision, dimension( 2 ) delta, double precision rho, double precision dsigma, double precision, dimension( 2 ) work)

DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.

Purpose:

!>
!> This subroutine computes the square root of the I-th eigenvalue
!> of a positive symmetric rank-one modification of a 2-by-2 diagonal
!> matrix
!>
!>            diag( D ) * diag( D ) +  RHO * Z * transpose(Z) .
!>
!> The diagonal entries in the array D are assumed to satisfy
!>
!>            0 <= D(i) < D(j)  for  i < j .
!>
!> We also assume RHO > 0 and that the Euclidean norm of the vector
!> Z is one.
!> 

Parameters

I

!>          I is INTEGER
!>         The index of the eigenvalue to be computed.  I = 1 or I = 2.
!> 

D

!>          D is DOUBLE PRECISION array, dimension ( 2 )
!>         The original eigenvalues.  We assume 0 <= D(1) < D(2).
!> 

Z

!>          Z is DOUBLE PRECISION array, dimension ( 2 )
!>         The components of the updating vector.
!> 

DELTA

!>          DELTA is DOUBLE PRECISION array, dimension ( 2 )
!>         Contains (D(j) - sigma_I) in its  j-th component.
!>         The vector DELTA contains the information necessary
!>         to construct the eigenvectors.
!> 

RHO

!>          RHO is DOUBLE PRECISION
!>         The scalar in the symmetric updating formula.
!> 

DSIGMA

!>          DSIGMA is DOUBLE PRECISION
!>         The computed sigma_I, the I-th updated eigenvalue.
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension ( 2 )
!>         WORK contains (D(j) + sigma_I) in its  j-th component.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA

Definition at line 115 of file dlasd5.f.

subroutine SLASD5 (integer i, real, dimension( 2 ) d, real, dimension( 2 ) z, real, dimension( 2 ) delta, real rho, real dsigma, real, dimension( 2 ) work)

SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.

Purpose:

!>
!> This subroutine computes the square root of the I-th eigenvalue
!> of a positive symmetric rank-one modification of a 2-by-2 diagonal
!> matrix
!>
!>            diag( D ) * diag( D ) +  RHO * Z * transpose(Z) .
!>
!> The diagonal entries in the array D are assumed to satisfy
!>
!>            0 <= D(i) < D(j)  for  i < j .
!>
!> We also assume RHO > 0 and that the Euclidean norm of the vector
!> Z is one.
!> 

Parameters

I

!>          I is INTEGER
!>         The index of the eigenvalue to be computed.  I = 1 or I = 2.
!> 

D

!>          D is REAL array, dimension (2)
!>         The original eigenvalues.  We assume 0 <= D(1) < D(2).
!> 

Z

!>          Z is REAL array, dimension (2)
!>         The components of the updating vector.
!> 

DELTA

!>          DELTA is REAL array, dimension (2)
!>         Contains (D(j) - sigma_I) in its  j-th component.
!>         The vector DELTA contains the information necessary
!>         to construct the eigenvectors.
!> 

RHO

!>          RHO is REAL
!>         The scalar in the symmetric updating formula.
!> 

DSIGMA

!>          DSIGMA is REAL
!>         The computed sigma_I, the I-th updated eigenvalue.
!> 

WORK

!>          WORK is REAL array, dimension (2)
!>         WORK contains (D(j) + sigma_I) in its  j-th component.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA

Definition at line 115 of file slasd5.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK