table of contents
lasd5(3) | Library Functions Manual | lasd5(3) |
NAME¶
lasd5 - lasd5: D&C step: secular equation, 2x2
SYNOPSIS¶
Functions¶
subroutine DLASD5 (i, d, z, delta, rho, dsigma, work)
DLASD5 computes the square root of the i-th eigenvalue of a positive
symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
subroutine SLASD5 (i, d, z, delta, rho, dsigma, work)
SLASD5 computes the square root of the i-th eigenvalue of a positive
symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
Detailed Description¶
Function Documentation¶
subroutine DLASD5 (integer i, double precision, dimension( 2 ) d, double precision, dimension( 2 ) z, double precision, dimension( 2 ) delta, double precision rho, double precision dsigma, double precision, dimension( 2 ) work)¶
DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
Purpose:
!> !> This subroutine computes the square root of the I-th eigenvalue !> of a positive symmetric rank-one modification of a 2-by-2 diagonal !> matrix !> !> diag( D ) * diag( D ) + RHO * Z * transpose(Z) . !> !> The diagonal entries in the array D are assumed to satisfy !> !> 0 <= D(i) < D(j) for i < j . !> !> We also assume RHO > 0 and that the Euclidean norm of the vector !> Z is one. !>
Parameters
!> I is INTEGER !> The index of the eigenvalue to be computed. I = 1 or I = 2. !>
D
!> D is DOUBLE PRECISION array, dimension ( 2 ) !> The original eigenvalues. We assume 0 <= D(1) < D(2). !>
Z
!> Z is DOUBLE PRECISION array, dimension ( 2 ) !> The components of the updating vector. !>
DELTA
!> DELTA is DOUBLE PRECISION array, dimension ( 2 ) !> Contains (D(j) - sigma_I) in its j-th component. !> The vector DELTA contains the information necessary !> to construct the eigenvectors. !>
RHO
!> RHO is DOUBLE PRECISION !> The scalar in the symmetric updating formula. !>
DSIGMA
!> DSIGMA is DOUBLE PRECISION !> The computed sigma_I, the I-th updated eigenvalue. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension ( 2 ) !> WORK contains (D(j) + sigma_I) in its j-th component. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 115 of file dlasd5.f.
subroutine SLASD5 (integer i, real, dimension( 2 ) d, real, dimension( 2 ) z, real, dimension( 2 ) delta, real rho, real dsigma, real, dimension( 2 ) work)¶
SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
Purpose:
!> !> This subroutine computes the square root of the I-th eigenvalue !> of a positive symmetric rank-one modification of a 2-by-2 diagonal !> matrix !> !> diag( D ) * diag( D ) + RHO * Z * transpose(Z) . !> !> The diagonal entries in the array D are assumed to satisfy !> !> 0 <= D(i) < D(j) for i < j . !> !> We also assume RHO > 0 and that the Euclidean norm of the vector !> Z is one. !>
Parameters
!> I is INTEGER !> The index of the eigenvalue to be computed. I = 1 or I = 2. !>
D
!> D is REAL array, dimension (2) !> The original eigenvalues. We assume 0 <= D(1) < D(2). !>
Z
!> Z is REAL array, dimension (2) !> The components of the updating vector. !>
DELTA
!> DELTA is REAL array, dimension (2) !> Contains (D(j) - sigma_I) in its j-th component. !> The vector DELTA contains the information necessary !> to construct the eigenvectors. !>
RHO
!> RHO is REAL !> The scalar in the symmetric updating formula. !>
DSIGMA
!> DSIGMA is REAL !> The computed sigma_I, the I-th updated eigenvalue. !>
WORK
!> WORK is REAL array, dimension (2) !> WORK contains (D(j) + sigma_I) in its j-th component. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 115 of file slasd5.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |