table of contents
lasd4(3) | Library Functions Manual | lasd4(3) |
NAME¶
lasd4 - lasd4: D&C step: secular equation nonlinear solver
SYNOPSIS¶
Functions¶
subroutine DLASD4 (n, i, d, z, delta, rho, sigma, work,
info)
DLASD4 computes the square root of the i-th updated eigenvalue of a
positive symmetric rank-one modification to a positive diagonal matrix. Used
by dbdsdc. subroutine SLASD4 (n, i, d, z, delta, rho, sigma, work,
info)
SLASD4 computes the square root of the i-th updated eigenvalue of a
positive symmetric rank-one modification to a positive diagonal matrix. Used
by sbdsdc.
Detailed Description¶
Function Documentation¶
subroutine DLASD4 (integer n, integer i, double precision, dimension( * ) d, double precision, dimension( * ) z, double precision, dimension( * ) delta, double precision rho, double precision sigma, double precision, dimension( * ) work, integer info)¶
DLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by dbdsdc.
Purpose:
!> !> This subroutine computes the square root of the I-th updated !> eigenvalue of a positive symmetric rank-one modification to !> a positive diagonal matrix whose entries are given as the squares !> of the corresponding entries in the array d, and that !> !> 0 <= D(i) < D(j) for i < j !> !> and that RHO > 0. This is arranged by the calling routine, and is !> no loss in generality. The rank-one modified system is thus !> !> diag( D ) * diag( D ) + RHO * Z * Z_transpose. !> !> where we assume the Euclidean norm of Z is 1. !> !> The method consists of approximating the rational functions in the !> secular equation by simpler interpolating rational functions. !>
Parameters
!> N is INTEGER !> The length of all arrays. !>
I
!> I is INTEGER !> The index of the eigenvalue to be computed. 1 <= I <= N. !>
D
!> D is DOUBLE PRECISION array, dimension ( N ) !> The original eigenvalues. It is assumed that they are in !> order, 0 <= D(I) < D(J) for I < J. !>
Z
!> Z is DOUBLE PRECISION array, dimension ( N ) !> The components of the updating vector. !>
DELTA
!> DELTA is DOUBLE PRECISION array, dimension ( N ) !> If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th !> component. If N = 1, then DELTA(1) = 1. The vector DELTA !> contains the information necessary to construct the !> (singular) eigenvectors. !>
RHO
!> RHO is DOUBLE PRECISION !> The scalar in the symmetric updating formula. !>
SIGMA
!> SIGMA is DOUBLE PRECISION !> The computed sigma_I, the I-th updated eigenvalue. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension ( N ) !> If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th !> component. If N = 1, then WORK( 1 ) = 1. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> > 0: if INFO = 1, the updating process failed. !>
Internal Parameters:
!> Logical variable ORGATI (origin-at-i?) is used for distinguishing !> whether D(i) or D(i+1) is treated as the origin. !> !> ORGATI = .true. origin at i !> ORGATI = .false. origin at i+1 !> !> Logical variable SWTCH3 (switch-for-3-poles?) is for noting !> if we are working with THREE poles! !> !> MAXIT is the maximum number of iterations allowed for each !> eigenvalue. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 152 of file dlasd4.f.
subroutine SLASD4 (integer n, integer i, real, dimension( * ) d, real, dimension( * ) z, real, dimension( * ) delta, real rho, real sigma, real, dimension( * ) work, integer info)¶
SLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by sbdsdc.
Purpose:
!> !> This subroutine computes the square root of the I-th updated !> eigenvalue of a positive symmetric rank-one modification to !> a positive diagonal matrix whose entries are given as the squares !> of the corresponding entries in the array d, and that !> !> 0 <= D(i) < D(j) for i < j !> !> and that RHO > 0. This is arranged by the calling routine, and is !> no loss in generality. The rank-one modified system is thus !> !> diag( D ) * diag( D ) + RHO * Z * Z_transpose. !> !> where we assume the Euclidean norm of Z is 1. !> !> The method consists of approximating the rational functions in the !> secular equation by simpler interpolating rational functions. !>
Parameters
!> N is INTEGER !> The length of all arrays. !>
I
!> I is INTEGER !> The index of the eigenvalue to be computed. 1 <= I <= N. !>
D
!> D is REAL array, dimension ( N ) !> The original eigenvalues. It is assumed that they are in !> order, 0 <= D(I) < D(J) for I < J. !>
Z
!> Z is REAL array, dimension ( N ) !> The components of the updating vector. !>
DELTA
!> DELTA is REAL array, dimension ( N ) !> If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th !> component. If N = 1, then DELTA(1) = 1. The vector DELTA !> contains the information necessary to construct the !> (singular) eigenvectors. !>
RHO
!> RHO is REAL !> The scalar in the symmetric updating formula. !>
SIGMA
!> SIGMA is REAL !> The computed sigma_I, the I-th updated eigenvalue. !>
WORK
!> WORK is REAL array, dimension ( N ) !> If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th !> component. If N = 1, then WORK( 1 ) = 1. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> > 0: if INFO = 1, the updating process failed. !>
Internal Parameters:
!> Logical variable ORGATI (origin-at-i?) is used for distinguishing !> whether D(i) or D(i+1) is treated as the origin. !> !> ORGATI = .true. origin at i !> ORGATI = .false. origin at i+1 !> !> Logical variable SWTCH3 (switch-for-3-poles?) is for noting !> if we are working with THREE poles! !> !> MAXIT is the maximum number of iterations allowed for each !> eigenvalue. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 152 of file slasd4.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |