Scroll to navigation

lascl(3) Library Functions Manual lascl(3)

NAME

lascl - lascl: scale matrix

SYNOPSIS

Functions


subroutine CLASCL (type, kl, ku, cfrom, cto, m, n, a, lda, info)
CLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom. subroutine DLASCL (type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom. subroutine SLASCL (type, kl, ku, cfrom, cto, m, n, a, lda, info)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom. subroutine ZLASCL (type, kl, ku, cfrom, cto, m, n, a, lda, info)
ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.

Detailed Description

Function Documentation

subroutine CLASCL (character type, integer kl, integer ku, real cfrom, real cto, integer m, integer n, complex, dimension( lda, * ) a, integer lda, integer info)

CLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.

Purpose:

!>
!> CLASCL multiplies the M by N complex matrix A by the real scalar
!> CTO/CFROM.  This is done without over/underflow as long as the final
!> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
!> A may be full, upper triangular, lower triangular, upper Hessenberg,
!> or banded.
!> 

Parameters

TYPE

!>          TYPE is CHARACTER*1
!>          TYPE indices the storage type of the input matrix.
!>          = 'G':  A is a full matrix.
!>          = 'L':  A is a lower triangular matrix.
!>          = 'U':  A is an upper triangular matrix.
!>          = 'H':  A is an upper Hessenberg matrix.
!>          = 'B':  A is a symmetric band matrix with lower bandwidth KL
!>                  and upper bandwidth KU and with the only the lower
!>                  half stored.
!>          = 'Q':  A is a symmetric band matrix with lower bandwidth KL
!>                  and upper bandwidth KU and with the only the upper
!>                  half stored.
!>          = 'Z':  A is a band matrix with lower bandwidth KL and upper
!>                  bandwidth KU. See CGBTRF for storage details.
!> 

KL

!>          KL is INTEGER
!>          The lower bandwidth of A.  Referenced only if TYPE = 'B',
!>          'Q' or 'Z'.
!> 

KU

!>          KU is INTEGER
!>          The upper bandwidth of A.  Referenced only if TYPE = 'B',
!>          'Q' or 'Z'.
!> 

CFROM

!>          CFROM is REAL
!> 

CTO

!>          CTO is REAL
!>
!>          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
!>          without over/underflow if the final result CTO*A(I,J)/CFROM
!>          can be represented without over/underflow.  CFROM must be
!>          nonzero.
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          The matrix to be multiplied by CTO/CFROM.  See TYPE for the
!>          storage type.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If TYPE = 'G', 'L', 'U', 'H', LDA >= max(1,M);
!>             TYPE = 'B', LDA >= KL+1;
!>             TYPE = 'Q', LDA >= KU+1;
!>             TYPE = 'Z', LDA >= 2*KL+KU+1.
!> 

INFO

!>          INFO is INTEGER
!>          0  - successful exit
!>          <0 - if INFO = -i, the i-th argument had an illegal value.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 142 of file clascl.f.

subroutine DLASCL (character type, integer kl, integer ku, double precision cfrom, double precision cto, integer m, integer n, double precision, dimension( lda, * ) a, integer lda, integer info)

DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.

Purpose:

!>
!> DLASCL multiplies the M by N real matrix A by the real scalar
!> CTO/CFROM.  This is done without over/underflow as long as the final
!> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
!> A may be full, upper triangular, lower triangular, upper Hessenberg,
!> or banded.
!> 

Parameters

TYPE

!>          TYPE is CHARACTER*1
!>          TYPE indices the storage type of the input matrix.
!>          = 'G':  A is a full matrix.
!>          = 'L':  A is a lower triangular matrix.
!>          = 'U':  A is an upper triangular matrix.
!>          = 'H':  A is an upper Hessenberg matrix.
!>          = 'B':  A is a symmetric band matrix with lower bandwidth KL
!>                  and upper bandwidth KU and with the only the lower
!>                  half stored.
!>          = 'Q':  A is a symmetric band matrix with lower bandwidth KL
!>                  and upper bandwidth KU and with the only the upper
!>                  half stored.
!>          = 'Z':  A is a band matrix with lower bandwidth KL and upper
!>                  bandwidth KU. See DGBTRF for storage details.
!> 

KL

!>          KL is INTEGER
!>          The lower bandwidth of A.  Referenced only if TYPE = 'B',
!>          'Q' or 'Z'.
!> 

KU

!>          KU is INTEGER
!>          The upper bandwidth of A.  Referenced only if TYPE = 'B',
!>          'Q' or 'Z'.
!> 

CFROM

!>          CFROM is DOUBLE PRECISION
!> 

CTO

!>          CTO is DOUBLE PRECISION
!>
!>          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
!>          without over/underflow if the final result CTO*A(I,J)/CFROM
!>          can be represented without over/underflow.  CFROM must be
!>          nonzero.
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          The matrix to be multiplied by CTO/CFROM.  See TYPE for the
!>          storage type.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If TYPE = 'G', 'L', 'U', 'H', LDA >= max(1,M);
!>             TYPE = 'B', LDA >= KL+1;
!>             TYPE = 'Q', LDA >= KU+1;
!>             TYPE = 'Z', LDA >= 2*KL+KU+1.
!> 

INFO

!>          INFO is INTEGER
!>          0  - successful exit
!>          <0 - if INFO = -i, the i-th argument had an illegal value.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 142 of file dlascl.f.

subroutine SLASCL (character type, integer kl, integer ku, real cfrom, real cto, integer m, integer n, real, dimension( lda, * ) a, integer lda, integer info)

SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.

Purpose:

!>
!> SLASCL multiplies the M by N real matrix A by the real scalar
!> CTO/CFROM.  This is done without over/underflow as long as the final
!> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
!> A may be full, upper triangular, lower triangular, upper Hessenberg,
!> or banded.
!> 

Parameters

TYPE

!>          TYPE is CHARACTER*1
!>          TYPE indices the storage type of the input matrix.
!>          = 'G':  A is a full matrix.
!>          = 'L':  A is a lower triangular matrix.
!>          = 'U':  A is an upper triangular matrix.
!>          = 'H':  A is an upper Hessenberg matrix.
!>          = 'B':  A is a symmetric band matrix with lower bandwidth KL
!>                  and upper bandwidth KU and with the only the lower
!>                  half stored.
!>          = 'Q':  A is a symmetric band matrix with lower bandwidth KL
!>                  and upper bandwidth KU and with the only the upper
!>                  half stored.
!>          = 'Z':  A is a band matrix with lower bandwidth KL and upper
!>                  bandwidth KU. See SGBTRF for storage details.
!> 

KL

!>          KL is INTEGER
!>          The lower bandwidth of A.  Referenced only if TYPE = 'B',
!>          'Q' or 'Z'.
!> 

KU

!>          KU is INTEGER
!>          The upper bandwidth of A.  Referenced only if TYPE = 'B',
!>          'Q' or 'Z'.
!> 

CFROM

!>          CFROM is REAL
!> 

CTO

!>          CTO is REAL
!>
!>          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
!>          without over/underflow if the final result CTO*A(I,J)/CFROM
!>          can be represented without over/underflow.  CFROM must be
!>          nonzero.
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          The matrix to be multiplied by CTO/CFROM.  See TYPE for the
!>          storage type.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If TYPE = 'G', 'L', 'U', 'H', LDA >= max(1,M);
!>             TYPE = 'B', LDA >= KL+1;
!>             TYPE = 'Q', LDA >= KU+1;
!>             TYPE = 'Z', LDA >= 2*KL+KU+1.
!> 

INFO

!>          INFO is INTEGER
!>          0  - successful exit
!>          <0 - if INFO = -i, the i-th argument had an illegal value.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 142 of file slascl.f.

subroutine ZLASCL (character type, integer kl, integer ku, double precision cfrom, double precision cto, integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, integer info)

ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.

Purpose:

!>
!> ZLASCL multiplies the M by N complex matrix A by the real scalar
!> CTO/CFROM.  This is done without over/underflow as long as the final
!> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
!> A may be full, upper triangular, lower triangular, upper Hessenberg,
!> or banded.
!> 

Parameters

TYPE

!>          TYPE is CHARACTER*1
!>          TYPE indices the storage type of the input matrix.
!>          = 'G':  A is a full matrix.
!>          = 'L':  A is a lower triangular matrix.
!>          = 'U':  A is an upper triangular matrix.
!>          = 'H':  A is an upper Hessenberg matrix.
!>          = 'B':  A is a symmetric band matrix with lower bandwidth KL
!>                  and upper bandwidth KU and with the only the lower
!>                  half stored.
!>          = 'Q':  A is a symmetric band matrix with lower bandwidth KL
!>                  and upper bandwidth KU and with the only the upper
!>                  half stored.
!>          = 'Z':  A is a band matrix with lower bandwidth KL and upper
!>                  bandwidth KU. See ZGBTRF for storage details.
!> 

KL

!>          KL is INTEGER
!>          The lower bandwidth of A.  Referenced only if TYPE = 'B',
!>          'Q' or 'Z'.
!> 

KU

!>          KU is INTEGER
!>          The upper bandwidth of A.  Referenced only if TYPE = 'B',
!>          'Q' or 'Z'.
!> 

CFROM

!>          CFROM is DOUBLE PRECISION
!> 

CTO

!>          CTO is DOUBLE PRECISION
!>
!>          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
!>          without over/underflow if the final result CTO*A(I,J)/CFROM
!>          can be represented without over/underflow.  CFROM must be
!>          nonzero.
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The matrix to be multiplied by CTO/CFROM.  See TYPE for the
!>          storage type.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If TYPE = 'G', 'L', 'U', 'H', LDA >= max(1,M);
!>             TYPE = 'B', LDA >= KL+1;
!>             TYPE = 'Q', LDA >= KU+1;
!>             TYPE = 'Z', LDA >= 2*KL+KU+1.
!> 

INFO

!>          INFO is INTEGER
!>          0  - successful exit
!>          <0 - if INFO = -i, the i-th argument had an illegal value.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 142 of file zlascl.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK