table of contents
larzt(3) | Library Functions Manual | larzt(3) |
NAME¶
larzt - larzt: generate T matrix
SYNOPSIS¶
Functions¶
subroutine CLARZT (direct, storev, n, k, v, ldv, tau, t,
ldt)
CLARZT forms the triangular factor T of a block reflector H = I - vtvH.
subroutine DLARZT (direct, storev, n, k, v, ldv, tau, t, ldt)
DLARZT forms the triangular factor T of a block reflector H = I - vtvH.
subroutine SLARZT (direct, storev, n, k, v, ldv, tau, t, ldt)
SLARZT forms the triangular factor T of a block reflector H = I - vtvH.
subroutine ZLARZT (direct, storev, n, k, v, ldv, tau, t, ldt)
ZLARZT forms the triangular factor T of a block reflector H = I - vtvH.
Detailed Description¶
Function Documentation¶
subroutine CLARZT (character direct, character storev, integer n, integer k, complex, dimension( ldv, * ) v, integer ldv, complex, dimension( * ) tau, complex, dimension( ldt, * ) t, integer ldt)¶
CLARZT forms the triangular factor T of a block reflector H = I - vtvH.
Purpose:
!> !> CLARZT forms the triangular factor T of a complex block reflector !> H of order > n, which is defined as a product of k elementary !> reflectors. !> !> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; !> !> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. !> !> If STOREV = 'C', the vector which defines the elementary reflector !> H(i) is stored in the i-th column of the array V, and !> !> H = I - V * T * V**H !> !> If STOREV = 'R', the vector which defines the elementary reflector !> H(i) is stored in the i-th row of the array V, and !> !> H = I - V**H * T * V !> !> Currently, only STOREV = 'R' and DIRECT = 'B' are supported. !>
Parameters
!> DIRECT is CHARACTER*1 !> Specifies the order in which the elementary reflectors are !> multiplied to form the block reflector: !> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) !> = 'B': H = H(k) . . . H(2) H(1) (Backward) !>
STOREV
!> STOREV is CHARACTER*1 !> Specifies how the vectors which define the elementary !> reflectors are stored (see also Further Details): !> = 'C': columnwise (not supported yet) !> = 'R': rowwise !>
N
!> N is INTEGER !> The order of the block reflector H. N >= 0. !>
K
!> K is INTEGER !> The order of the triangular factor T (= the number of !> elementary reflectors). K >= 1. !>
V
!> V is COMPLEX array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,N) if STOREV = 'R' !> The matrix V. See further details. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. !>
TAU
!> TAU is COMPLEX array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i). !>
T
!> T is COMPLEX array, dimension (LDT,K) !> The k by k triangular factor T of the block reflector. !> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is !> lower triangular. The rest of the array is not used. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= K. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Further Details:
!> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3. The elements equal to 1 are not stored; the corresponding !> array elements are modified but restored on exit. The rest of the !> array is not used. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> ______V_____ !> ( v1 v2 v3 ) / \ !> ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 ) !> V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 ) !> ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 ) !> ( v1 v2 v3 ) !> . . . !> . . . !> 1 . . !> 1 . !> 1 !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> ______V_____ !> 1 / \ !> . 1 ( 1 . . . . v1 v1 v1 v1 v1 ) !> . . 1 ( . 1 . . . v2 v2 v2 v2 v2 ) !> . . . ( . . 1 . . v3 v3 v3 v3 v3 ) !> . . . !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> V = ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !>
Definition at line 184 of file clarzt.f.
subroutine DLARZT (character direct, character storev, integer n, integer k, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( * ) tau, double precision, dimension( ldt, * ) t, integer ldt)¶
DLARZT forms the triangular factor T of a block reflector H = I - vtvH.
Purpose:
!> !> DLARZT forms the triangular factor T of a real block reflector !> H of order > n, which is defined as a product of k elementary !> reflectors. !> !> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; !> !> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. !> !> If STOREV = 'C', the vector which defines the elementary reflector !> H(i) is stored in the i-th column of the array V, and !> !> H = I - V * T * V**T !> !> If STOREV = 'R', the vector which defines the elementary reflector !> H(i) is stored in the i-th row of the array V, and !> !> H = I - V**T * T * V !> !> Currently, only STOREV = 'R' and DIRECT = 'B' are supported. !>
Parameters
!> DIRECT is CHARACTER*1 !> Specifies the order in which the elementary reflectors are !> multiplied to form the block reflector: !> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) !> = 'B': H = H(k) . . . H(2) H(1) (Backward) !>
STOREV
!> STOREV is CHARACTER*1 !> Specifies how the vectors which define the elementary !> reflectors are stored (see also Further Details): !> = 'C': columnwise (not supported yet) !> = 'R': rowwise !>
N
!> N is INTEGER !> The order of the block reflector H. N >= 0. !>
K
!> K is INTEGER !> The order of the triangular factor T (= the number of !> elementary reflectors). K >= 1. !>
V
!> V is DOUBLE PRECISION array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,N) if STOREV = 'R' !> The matrix V. See further details. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i). !>
T
!> T is DOUBLE PRECISION array, dimension (LDT,K) !> The k by k triangular factor T of the block reflector. !> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is !> lower triangular. The rest of the array is not used. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= K. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Further Details:
!> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3. The elements equal to 1 are not stored; the corresponding !> array elements are modified but restored on exit. The rest of the !> array is not used. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> ______V_____ !> ( v1 v2 v3 ) / \ !> ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 ) !> V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 ) !> ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 ) !> ( v1 v2 v3 ) !> . . . !> . . . !> 1 . . !> 1 . !> 1 !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> ______V_____ !> 1 / \ !> . 1 ( 1 . . . . v1 v1 v1 v1 v1 ) !> . . 1 ( . 1 . . . v2 v2 v2 v2 v2 ) !> . . . ( . . 1 . . v3 v3 v3 v3 v3 ) !> . . . !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> V = ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !>
Definition at line 184 of file dlarzt.f.
subroutine SLARZT (character direct, character storev, integer n, integer k, real, dimension( ldv, * ) v, integer ldv, real, dimension( * ) tau, real, dimension( ldt, * ) t, integer ldt)¶
SLARZT forms the triangular factor T of a block reflector H = I - vtvH.
Purpose:
!> !> SLARZT forms the triangular factor T of a real block reflector !> H of order > n, which is defined as a product of k elementary !> reflectors. !> !> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; !> !> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. !> !> If STOREV = 'C', the vector which defines the elementary reflector !> H(i) is stored in the i-th column of the array V, and !> !> H = I - V * T * V**T !> !> If STOREV = 'R', the vector which defines the elementary reflector !> H(i) is stored in the i-th row of the array V, and !> !> H = I - V**T * T * V !> !> Currently, only STOREV = 'R' and DIRECT = 'B' are supported. !>
Parameters
!> DIRECT is CHARACTER*1 !> Specifies the order in which the elementary reflectors are !> multiplied to form the block reflector: !> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) !> = 'B': H = H(k) . . . H(2) H(1) (Backward) !>
STOREV
!> STOREV is CHARACTER*1 !> Specifies how the vectors which define the elementary !> reflectors are stored (see also Further Details): !> = 'C': columnwise (not supported yet) !> = 'R': rowwise !>
N
!> N is INTEGER !> The order of the block reflector H. N >= 0. !>
K
!> K is INTEGER !> The order of the triangular factor T (= the number of !> elementary reflectors). K >= 1. !>
V
!> V is REAL array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,N) if STOREV = 'R' !> The matrix V. See further details. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. !>
TAU
!> TAU is REAL array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i). !>
T
!> T is REAL array, dimension (LDT,K) !> The k by k triangular factor T of the block reflector. !> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is !> lower triangular. The rest of the array is not used. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= K. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Further Details:
!> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3. The elements equal to 1 are not stored; the corresponding !> array elements are modified but restored on exit. The rest of the !> array is not used. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> ______V_____ !> ( v1 v2 v3 ) / \ !> ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 ) !> V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 ) !> ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 ) !> ( v1 v2 v3 ) !> . . . !> . . . !> 1 . . !> 1 . !> 1 !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> ______V_____ !> 1 / \ !> . 1 ( 1 . . . . v1 v1 v1 v1 v1 ) !> . . 1 ( . 1 . . . v2 v2 v2 v2 v2 ) !> . . . ( . . 1 . . v3 v3 v3 v3 v3 ) !> . . . !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> V = ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !>
Definition at line 184 of file slarzt.f.
subroutine ZLARZT (character direct, character storev, integer n, integer k, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( * ) tau, complex*16, dimension( ldt, * ) t, integer ldt)¶
ZLARZT forms the triangular factor T of a block reflector H = I - vtvH.
Purpose:
!> !> ZLARZT forms the triangular factor T of a complex block reflector !> H of order > n, which is defined as a product of k elementary !> reflectors. !> !> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; !> !> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. !> !> If STOREV = 'C', the vector which defines the elementary reflector !> H(i) is stored in the i-th column of the array V, and !> !> H = I - V * T * V**H !> !> If STOREV = 'R', the vector which defines the elementary reflector !> H(i) is stored in the i-th row of the array V, and !> !> H = I - V**H * T * V !> !> Currently, only STOREV = 'R' and DIRECT = 'B' are supported. !>
Parameters
!> DIRECT is CHARACTER*1 !> Specifies the order in which the elementary reflectors are !> multiplied to form the block reflector: !> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) !> = 'B': H = H(k) . . . H(2) H(1) (Backward) !>
STOREV
!> STOREV is CHARACTER*1 !> Specifies how the vectors which define the elementary !> reflectors are stored (see also Further Details): !> = 'C': columnwise (not supported yet) !> = 'R': rowwise !>
N
!> N is INTEGER !> The order of the block reflector H. N >= 0. !>
K
!> K is INTEGER !> The order of the triangular factor T (= the number of !> elementary reflectors). K >= 1. !>
V
!> V is COMPLEX*16 array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,N) if STOREV = 'R' !> The matrix V. See further details. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. !>
TAU
!> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i). !>
T
!> T is COMPLEX*16 array, dimension (LDT,K) !> The k by k triangular factor T of the block reflector. !> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is !> lower triangular. The rest of the array is not used. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= K. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Further Details:
!> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3. The elements equal to 1 are not stored; the corresponding !> array elements are modified but restored on exit. The rest of the !> array is not used. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> ______V_____ !> ( v1 v2 v3 ) / \ !> ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 ) !> V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 ) !> ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 ) !> ( v1 v2 v3 ) !> . . . !> . . . !> 1 . . !> 1 . !> 1 !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> ______V_____ !> 1 / \ !> . 1 ( 1 . . . . v1 v1 v1 v1 v1 ) !> . . 1 ( . 1 . . . v2 v2 v2 v2 v2 ) !> . . . ( . . 1 . . v3 v3 v3 v3 v3 ) !> . . . !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> V = ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !>
Definition at line 184 of file zlarzt.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |