Scroll to navigation

larzt(3) Library Functions Manual larzt(3)

NAME

larzt - larzt: generate T matrix

SYNOPSIS

Functions


subroutine CLARZT (direct, storev, n, k, v, ldv, tau, t, ldt)
CLARZT forms the triangular factor T of a block reflector H = I - vtvH. subroutine DLARZT (direct, storev, n, k, v, ldv, tau, t, ldt)
DLARZT forms the triangular factor T of a block reflector H = I - vtvH. subroutine SLARZT (direct, storev, n, k, v, ldv, tau, t, ldt)
SLARZT forms the triangular factor T of a block reflector H = I - vtvH. subroutine ZLARZT (direct, storev, n, k, v, ldv, tau, t, ldt)
ZLARZT forms the triangular factor T of a block reflector H = I - vtvH.

Detailed Description

Function Documentation

subroutine CLARZT (character direct, character storev, integer n, integer k, complex, dimension( ldv, * ) v, integer ldv, complex, dimension( * ) tau, complex, dimension( ldt, * ) t, integer ldt)

CLARZT forms the triangular factor T of a block reflector H = I - vtvH.

Purpose:

!>
!> CLARZT forms the triangular factor T of a complex block reflector
!> H of order > n, which is defined as a product of k elementary
!> reflectors.
!>
!> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
!>
!> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
!>
!> If STOREV = 'C', the vector which defines the elementary reflector
!> H(i) is stored in the i-th column of the array V, and
!>
!>    H  =  I - V * T * V**H
!>
!> If STOREV = 'R', the vector which defines the elementary reflector
!> H(i) is stored in the i-th row of the array V, and
!>
!>    H  =  I - V**H * T * V
!>
!> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
!> 

Parameters

DIRECT

!>          DIRECT is CHARACTER*1
!>          Specifies the order in which the elementary reflectors are
!>          multiplied to form the block reflector:
!>          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
!>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
!> 

STOREV

!>          STOREV is CHARACTER*1
!>          Specifies how the vectors which define the elementary
!>          reflectors are stored (see also Further Details):
!>          = 'C': columnwise                        (not supported yet)
!>          = 'R': rowwise
!> 

N

!>          N is INTEGER
!>          The order of the block reflector H. N >= 0.
!> 

K

!>          K is INTEGER
!>          The order of the triangular factor T (= the number of
!>          elementary reflectors). K >= 1.
!> 

V

!>          V is COMPLEX array, dimension
!>                               (LDV,K) if STOREV = 'C'
!>                               (LDV,N) if STOREV = 'R'
!>          The matrix V. See further details.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
!> 

TAU

!>          TAU is COMPLEX array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i).
!> 

T

!>          T is COMPLEX array, dimension (LDT,K)
!>          The k by k triangular factor T of the block reflector.
!>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
!>          lower triangular. The rest of the array is not used.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T. LDT >= K.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:

!>
!>  The shape of the matrix V and the storage of the vectors which define
!>  the H(i) is best illustrated by the following example with n = 5 and
!>  k = 3. The elements equal to 1 are not stored; the corresponding
!>  array elements are modified but restored on exit. The rest of the
!>  array is not used.
!>
!>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
!>
!>                                              ______V_____
!>         ( v1 v2 v3 )                        /            \
!>         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
!>     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
!>         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
!>         ( v1 v2 v3 )
!>            .  .  .
!>            .  .  .
!>            1  .  .
!>               1  .
!>                  1
!>
!>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
!>
!>                                                        ______V_____
!>            1                                          /            \
!>            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
!>            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
!>            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
!>            .  .  .
!>         ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!>     V = ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!> 

Definition at line 184 of file clarzt.f.

subroutine DLARZT (character direct, character storev, integer n, integer k, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( * ) tau, double precision, dimension( ldt, * ) t, integer ldt)

DLARZT forms the triangular factor T of a block reflector H = I - vtvH.

Purpose:

!>
!> DLARZT forms the triangular factor T of a real block reflector
!> H of order > n, which is defined as a product of k elementary
!> reflectors.
!>
!> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
!>
!> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
!>
!> If STOREV = 'C', the vector which defines the elementary reflector
!> H(i) is stored in the i-th column of the array V, and
!>
!>    H  =  I - V * T * V**T
!>
!> If STOREV = 'R', the vector which defines the elementary reflector
!> H(i) is stored in the i-th row of the array V, and
!>
!>    H  =  I - V**T * T * V
!>
!> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
!> 

Parameters

DIRECT

!>          DIRECT is CHARACTER*1
!>          Specifies the order in which the elementary reflectors are
!>          multiplied to form the block reflector:
!>          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
!>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
!> 

STOREV

!>          STOREV is CHARACTER*1
!>          Specifies how the vectors which define the elementary
!>          reflectors are stored (see also Further Details):
!>          = 'C': columnwise                        (not supported yet)
!>          = 'R': rowwise
!> 

N

!>          N is INTEGER
!>          The order of the block reflector H. N >= 0.
!> 

K

!>          K is INTEGER
!>          The order of the triangular factor T (= the number of
!>          elementary reflectors). K >= 1.
!> 

V

!>          V is DOUBLE PRECISION array, dimension
!>                               (LDV,K) if STOREV = 'C'
!>                               (LDV,N) if STOREV = 'R'
!>          The matrix V. See further details.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
!> 

TAU

!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i).
!> 

T

!>          T is DOUBLE PRECISION array, dimension (LDT,K)
!>          The k by k triangular factor T of the block reflector.
!>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
!>          lower triangular. The rest of the array is not used.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T. LDT >= K.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:

!>
!>  The shape of the matrix V and the storage of the vectors which define
!>  the H(i) is best illustrated by the following example with n = 5 and
!>  k = 3. The elements equal to 1 are not stored; the corresponding
!>  array elements are modified but restored on exit. The rest of the
!>  array is not used.
!>
!>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
!>
!>                                              ______V_____
!>         ( v1 v2 v3 )                        /            \
!>         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
!>     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
!>         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
!>         ( v1 v2 v3 )
!>            .  .  .
!>            .  .  .
!>            1  .  .
!>               1  .
!>                  1
!>
!>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
!>
!>                                                        ______V_____
!>            1                                          /            \
!>            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
!>            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
!>            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
!>            .  .  .
!>         ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!>     V = ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!> 

Definition at line 184 of file dlarzt.f.

subroutine SLARZT (character direct, character storev, integer n, integer k, real, dimension( ldv, * ) v, integer ldv, real, dimension( * ) tau, real, dimension( ldt, * ) t, integer ldt)

SLARZT forms the triangular factor T of a block reflector H = I - vtvH.

Purpose:

!>
!> SLARZT forms the triangular factor T of a real block reflector
!> H of order > n, which is defined as a product of k elementary
!> reflectors.
!>
!> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
!>
!> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
!>
!> If STOREV = 'C', the vector which defines the elementary reflector
!> H(i) is stored in the i-th column of the array V, and
!>
!>    H  =  I - V * T * V**T
!>
!> If STOREV = 'R', the vector which defines the elementary reflector
!> H(i) is stored in the i-th row of the array V, and
!>
!>    H  =  I - V**T * T * V
!>
!> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
!> 

Parameters

DIRECT

!>          DIRECT is CHARACTER*1
!>          Specifies the order in which the elementary reflectors are
!>          multiplied to form the block reflector:
!>          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
!>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
!> 

STOREV

!>          STOREV is CHARACTER*1
!>          Specifies how the vectors which define the elementary
!>          reflectors are stored (see also Further Details):
!>          = 'C': columnwise                        (not supported yet)
!>          = 'R': rowwise
!> 

N

!>          N is INTEGER
!>          The order of the block reflector H. N >= 0.
!> 

K

!>          K is INTEGER
!>          The order of the triangular factor T (= the number of
!>          elementary reflectors). K >= 1.
!> 

V

!>          V is REAL array, dimension
!>                               (LDV,K) if STOREV = 'C'
!>                               (LDV,N) if STOREV = 'R'
!>          The matrix V. See further details.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
!> 

TAU

!>          TAU is REAL array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i).
!> 

T

!>          T is REAL array, dimension (LDT,K)
!>          The k by k triangular factor T of the block reflector.
!>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
!>          lower triangular. The rest of the array is not used.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T. LDT >= K.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:

!>
!>  The shape of the matrix V and the storage of the vectors which define
!>  the H(i) is best illustrated by the following example with n = 5 and
!>  k = 3. The elements equal to 1 are not stored; the corresponding
!>  array elements are modified but restored on exit. The rest of the
!>  array is not used.
!>
!>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
!>
!>                                              ______V_____
!>         ( v1 v2 v3 )                        /            \
!>         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
!>     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
!>         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
!>         ( v1 v2 v3 )
!>            .  .  .
!>            .  .  .
!>            1  .  .
!>               1  .
!>                  1
!>
!>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
!>
!>                                                        ______V_____
!>            1                                          /            \
!>            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
!>            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
!>            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
!>            .  .  .
!>         ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!>     V = ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!> 

Definition at line 184 of file slarzt.f.

subroutine ZLARZT (character direct, character storev, integer n, integer k, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( * ) tau, complex*16, dimension( ldt, * ) t, integer ldt)

ZLARZT forms the triangular factor T of a block reflector H = I - vtvH.

Purpose:

!>
!> ZLARZT forms the triangular factor T of a complex block reflector
!> H of order > n, which is defined as a product of k elementary
!> reflectors.
!>
!> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
!>
!> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
!>
!> If STOREV = 'C', the vector which defines the elementary reflector
!> H(i) is stored in the i-th column of the array V, and
!>
!>    H  =  I - V * T * V**H
!>
!> If STOREV = 'R', the vector which defines the elementary reflector
!> H(i) is stored in the i-th row of the array V, and
!>
!>    H  =  I - V**H * T * V
!>
!> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
!> 

Parameters

DIRECT

!>          DIRECT is CHARACTER*1
!>          Specifies the order in which the elementary reflectors are
!>          multiplied to form the block reflector:
!>          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
!>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
!> 

STOREV

!>          STOREV is CHARACTER*1
!>          Specifies how the vectors which define the elementary
!>          reflectors are stored (see also Further Details):
!>          = 'C': columnwise                        (not supported yet)
!>          = 'R': rowwise
!> 

N

!>          N is INTEGER
!>          The order of the block reflector H. N >= 0.
!> 

K

!>          K is INTEGER
!>          The order of the triangular factor T (= the number of
!>          elementary reflectors). K >= 1.
!> 

V

!>          V is COMPLEX*16 array, dimension
!>                               (LDV,K) if STOREV = 'C'
!>                               (LDV,N) if STOREV = 'R'
!>          The matrix V. See further details.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
!> 

TAU

!>          TAU is COMPLEX*16 array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i).
!> 

T

!>          T is COMPLEX*16 array, dimension (LDT,K)
!>          The k by k triangular factor T of the block reflector.
!>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
!>          lower triangular. The rest of the array is not used.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T. LDT >= K.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:

!>
!>  The shape of the matrix V and the storage of the vectors which define
!>  the H(i) is best illustrated by the following example with n = 5 and
!>  k = 3. The elements equal to 1 are not stored; the corresponding
!>  array elements are modified but restored on exit. The rest of the
!>  array is not used.
!>
!>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
!>
!>                                              ______V_____
!>         ( v1 v2 v3 )                        /            \
!>         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
!>     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
!>         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
!>         ( v1 v2 v3 )
!>            .  .  .
!>            .  .  .
!>            1  .  .
!>               1  .
!>                  1
!>
!>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
!>
!>                                                        ______V_____
!>            1                                          /            \
!>            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
!>            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
!>            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
!>            .  .  .
!>         ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!>     V = ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!> 

Definition at line 184 of file zlarzt.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK