table of contents
larrr(3) | Library Functions Manual | larrr(3) |
NAME¶
larrr - larrr: step in stemr, test to do expensive tridiag eig algorithm
SYNOPSIS¶
Functions¶
subroutine DLARRR (n, d, e, info)
DLARRR performs tests to decide whether the symmetric tridiagonal
matrix T warrants expensive computations which guarantee high relative
accuracy in the eigenvalues. subroutine SLARRR (n, d, e, info)
SLARRR performs tests to decide whether the symmetric tridiagonal
matrix T warrants expensive computations which guarantee high relative
accuracy in the eigenvalues.
Detailed Description¶
Function Documentation¶
subroutine DLARRR (integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, integer info)¶
DLARRR performs tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
Purpose:
!> !> Perform tests to decide whether the symmetric tridiagonal matrix T !> warrants expensive computations which guarantee high relative accuracy !> in the eigenvalues. !>
Parameters
!> N is INTEGER !> The order of the matrix. N > 0. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The N diagonal elements of the tridiagonal matrix T. !>
E
!> E is DOUBLE PRECISION array, dimension (N) !> On entry, the first (N-1) entries contain the subdiagonal !> elements of the tridiagonal matrix T; E(N) is set to ZERO. !>
INFO
!> INFO is INTEGER !> INFO = 0(default) : the matrix warrants computations preserving !> relative accuracy. !> INFO = 1 : the matrix warrants computations guaranteeing !> only absolute accuracy. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Definition at line 93 of file dlarrr.f.
subroutine SLARRR (integer n, real, dimension( * ) d, real, dimension( * ) e, integer info)¶
SLARRR performs tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
Purpose:
!> !> Perform tests to decide whether the symmetric tridiagonal matrix T !> warrants expensive computations which guarantee high relative accuracy !> in the eigenvalues. !>
Parameters
!> N is INTEGER !> The order of the matrix. N > 0. !>
D
!> D is REAL array, dimension (N) !> The N diagonal elements of the tridiagonal matrix T. !>
E
!> E is REAL array, dimension (N) !> On entry, the first (N-1) entries contain the subdiagonal !> elements of the tridiagonal matrix T; E(N) is set to ZERO. !>
INFO
!> INFO is INTEGER !> INFO = 0(default) : the matrix warrants computations preserving !> relative accuracy. !> INFO = 1 : the matrix warrants computations guaranteeing !> only absolute accuracy. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
Definition at line 93 of file slarrr.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |