table of contents
larft(3) | Library Functions Manual | larft(3) |
NAME¶
larft - larft: generate T matrix
SYNOPSIS¶
Functions¶
subroutine CLARFT (direct, storev, n, k, v, ldv, tau, t,
ldt)
CLARFT forms the triangular factor T of a block reflector H = I - vtvH
subroutine DLARFT (direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
subroutine SLARFT (direct, storev, n, k, v, ldv, tau, t, ldt)
SLARFT forms the triangular factor T of a block reflector H = I - vtvH
subroutine ZLARFT (direct, storev, n, k, v, ldv, tau, t, ldt)
ZLARFT forms the triangular factor T of a block reflector H = I - vtvH
Detailed Description¶
Function Documentation¶
subroutine CLARFT (character direct, character storev, integer n, integer k, complex, dimension( ldv, * ) v, integer ldv, complex, dimension( * ) tau, complex, dimension( ldt, * ) t, integer ldt)¶
CLARFT forms the triangular factor T of a block reflector H = I - vtvH
Purpose:
!> !> CLARFT forms the triangular factor T of a complex block reflector H !> of order n, which is defined as a product of k elementary reflectors. !> !> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; !> !> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. !> !> If STOREV = 'C', the vector which defines the elementary reflector !> H(i) is stored in the i-th column of the array V, and !> !> H = I - V * T * V**H !> !> If STOREV = 'R', the vector which defines the elementary reflector !> H(i) is stored in the i-th row of the array V, and !> !> H = I - V**H * T * V !>
Parameters
!> DIRECT is CHARACTER*1 !> Specifies the order in which the elementary reflectors are !> multiplied to form the block reflector: !> = 'F': H = H(1) H(2) . . . H(k) (Forward) !> = 'B': H = H(k) . . . H(2) H(1) (Backward) !>
STOREV
!> STOREV is CHARACTER*1 !> Specifies how the vectors which define the elementary !> reflectors are stored (see also Further Details): !> = 'C': columnwise !> = 'R': rowwise !>
N
!> N is INTEGER !> The order of the block reflector H. N >= 0. !>
K
!> K is INTEGER !> The order of the triangular factor T (= the number of !> elementary reflectors). K >= 1. !>
V
!> V is COMPLEX array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,N) if STOREV = 'R' !> The matrix V. See further details. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. !>
TAU
!> TAU is COMPLEX array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i). !>
T
!> T is COMPLEX array, dimension (LDT,K) !> The k by k triangular factor T of the block reflector. !> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is !> lower triangular. The rest of the array is not used. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= K. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3. The elements equal to 1 are not stored. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) !> ( v1 1 ) ( 1 v2 v2 v2 ) !> ( v1 v2 1 ) ( 1 v3 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) !> ( v1 v2 v3 ) ( v2 v2 v2 1 ) !> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) !> ( 1 v3 ) !> ( 1 ) !>
Definition at line 162 of file clarft.f.
subroutine DLARFT (character direct, character storev, integer n, integer k, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( * ) tau, double precision, dimension( ldt, * ) t, integer ldt)¶
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
Purpose:
!> !> DLARFT forms the triangular factor T of a real block reflector H !> of order n, which is defined as a product of k elementary reflectors. !> !> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; !> !> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. !> !> If STOREV = 'C', the vector which defines the elementary reflector !> H(i) is stored in the i-th column of the array V, and !> !> H = I - V * T * V**T !> !> If STOREV = 'R', the vector which defines the elementary reflector !> H(i) is stored in the i-th row of the array V, and !> !> H = I - V**T * T * V !>
Parameters
!> DIRECT is CHARACTER*1 !> Specifies the order in which the elementary reflectors are !> multiplied to form the block reflector: !> = 'F': H = H(1) H(2) . . . H(k) (Forward) !> = 'B': H = H(k) . . . H(2) H(1) (Backward) !>
STOREV
!> STOREV is CHARACTER*1 !> Specifies how the vectors which define the elementary !> reflectors are stored (see also Further Details): !> = 'C': columnwise !> = 'R': rowwise !>
N
!> N is INTEGER !> The order of the block reflector H. N >= 0. !>
K
!> K is INTEGER !> The order of the triangular factor T (= the number of !> elementary reflectors). K >= 1. !>
V
!> V is DOUBLE PRECISION array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,N) if STOREV = 'R' !> The matrix V. See further details. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i). !>
T
!> T is DOUBLE PRECISION array, dimension (LDT,K) !> The k by k triangular factor T of the block reflector. !> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is !> lower triangular. The rest of the array is not used. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= K. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3. The elements equal to 1 are not stored. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) !> ( v1 1 ) ( 1 v2 v2 v2 ) !> ( v1 v2 1 ) ( 1 v3 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) !> ( v1 v2 v3 ) ( v2 v2 v2 1 ) !> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) !> ( 1 v3 ) !> ( 1 ) !>
Definition at line 162 of file dlarft.f.
subroutine SLARFT (character direct, character storev, integer n, integer k, real, dimension( ldv, * ) v, integer ldv, real, dimension( * ) tau, real, dimension( ldt, * ) t, integer ldt)¶
SLARFT forms the triangular factor T of a block reflector H = I - vtvH
Purpose:
!> !> SLARFT forms the triangular factor T of a real block reflector H !> of order n, which is defined as a product of k elementary reflectors. !> !> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; !> !> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. !> !> If STOREV = 'C', the vector which defines the elementary reflector !> H(i) is stored in the i-th column of the array V, and !> !> H = I - V * T * V**T !> !> If STOREV = 'R', the vector which defines the elementary reflector !> H(i) is stored in the i-th row of the array V, and !> !> H = I - V**T * T * V !>
Parameters
!> DIRECT is CHARACTER*1 !> Specifies the order in which the elementary reflectors are !> multiplied to form the block reflector: !> = 'F': H = H(1) H(2) . . . H(k) (Forward) !> = 'B': H = H(k) . . . H(2) H(1) (Backward) !>
STOREV
!> STOREV is CHARACTER*1 !> Specifies how the vectors which define the elementary !> reflectors are stored (see also Further Details): !> = 'C': columnwise !> = 'R': rowwise !>
N
!> N is INTEGER !> The order of the block reflector H. N >= 0. !>
K
!> K is INTEGER !> The order of the triangular factor T (= the number of !> elementary reflectors). K >= 1. !>
V
!> V is REAL array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,N) if STOREV = 'R' !> The matrix V. See further details. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. !>
TAU
!> TAU is REAL array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i). !>
T
!> T is REAL array, dimension (LDT,K) !> The k by k triangular factor T of the block reflector. !> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is !> lower triangular. The rest of the array is not used. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= K. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3. The elements equal to 1 are not stored. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) !> ( v1 1 ) ( 1 v2 v2 v2 ) !> ( v1 v2 1 ) ( 1 v3 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) !> ( v1 v2 v3 ) ( v2 v2 v2 1 ) !> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) !> ( 1 v3 ) !> ( 1 ) !>
Definition at line 162 of file slarft.f.
subroutine ZLARFT (character direct, character storev, integer n, integer k, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( * ) tau, complex*16, dimension( ldt, * ) t, integer ldt)¶
ZLARFT forms the triangular factor T of a block reflector H = I - vtvH
Purpose:
!> !> ZLARFT forms the triangular factor T of a complex block reflector H !> of order n, which is defined as a product of k elementary reflectors. !> !> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; !> !> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. !> !> If STOREV = 'C', the vector which defines the elementary reflector !> H(i) is stored in the i-th column of the array V, and !> !> H = I - V * T * V**H !> !> If STOREV = 'R', the vector which defines the elementary reflector !> H(i) is stored in the i-th row of the array V, and !> !> H = I - V**H * T * V !>
Parameters
!> DIRECT is CHARACTER*1 !> Specifies the order in which the elementary reflectors are !> multiplied to form the block reflector: !> = 'F': H = H(1) H(2) . . . H(k) (Forward) !> = 'B': H = H(k) . . . H(2) H(1) (Backward) !>
STOREV
!> STOREV is CHARACTER*1 !> Specifies how the vectors which define the elementary !> reflectors are stored (see also Further Details): !> = 'C': columnwise !> = 'R': rowwise !>
N
!> N is INTEGER !> The order of the block reflector H. N >= 0. !>
K
!> K is INTEGER !> The order of the triangular factor T (= the number of !> elementary reflectors). K >= 1. !>
V
!> V is COMPLEX*16 array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,N) if STOREV = 'R' !> The matrix V. See further details. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. !>
TAU
!> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i). !>
T
!> T is COMPLEX*16 array, dimension (LDT,K) !> The k by k triangular factor T of the block reflector. !> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is !> lower triangular. The rest of the array is not used. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= K. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3. The elements equal to 1 are not stored. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) !> ( v1 1 ) ( 1 v2 v2 v2 ) !> ( v1 v2 1 ) ( 1 v3 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) !> ( v1 v2 v3 ) ( v2 v2 v2 1 ) !> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) !> ( 1 v3 ) !> ( 1 ) !>
Definition at line 162 of file zlarft.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |