table of contents
laqps(3) | Library Functions Manual | laqps(3) |
NAME¶
laqps - laqps: step of geqp3
SYNOPSIS¶
Functions¶
subroutine CLAQPS (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)
CLAQPS computes a step of QR factorization with column pivoting of a
real m-by-n matrix A by using BLAS level 3. subroutine DLAQPS (m, n,
offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)
DLAQPS computes a step of QR factorization with column pivoting of a
real m-by-n matrix A by using BLAS level 3. subroutine SLAQPS (m, n,
offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)
SLAQPS computes a step of QR factorization with column pivoting of a
real m-by-n matrix A by using BLAS level 3. subroutine ZLAQPS (m, n,
offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)
ZLAQPS computes a step of QR factorization with column pivoting of a
real m-by-n matrix A by using BLAS level 3.
Detailed Description¶
Function Documentation¶
subroutine CLAQPS (integer m, integer n, integer offset, integer nb, integer kb, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex, dimension( * ) tau, real, dimension( * ) vn1, real, dimension( * ) vn2, complex, dimension( * ) auxv, complex, dimension( ldf, * ) f, integer ldf)¶
CLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
Purpose:
!> !> CLAQPS computes a step of QR factorization with column pivoting !> of a complex M-by-N matrix A by using Blas-3. It tries to factorize !> NB columns from A starting from the row OFFSET+1, and updates all !> of the matrix with Blas-3 xGEMM. !> !> In some cases, due to catastrophic cancellations, it cannot !> factorize NB columns. Hence, the actual number of factorized !> columns is returned in KB. !> !> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0 !>
OFFSET
!> OFFSET is INTEGER !> The number of rows of A that have been factorized in !> previous steps. !>
NB
!> NB is INTEGER !> The number of columns to factorize. !>
KB
!> KB is INTEGER !> The number of columns actually factorized. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, block A(OFFSET+1:M,1:KB) is the triangular !> factor obtained and block A(1:OFFSET,1:N) has been !> accordingly pivoted, but no factorized. !> The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has !> been updated. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
JPVT
!> JPVT is INTEGER array, dimension (N) !> JPVT(I) = K <==> Column K of the full matrix A has been !> permuted into position I in AP. !>
TAU
!> TAU is COMPLEX array, dimension (KB) !> The scalar factors of the elementary reflectors. !>
VN1
!> VN1 is REAL array, dimension (N) !> The vector with the partial column norms. !>
VN2
!> VN2 is REAL array, dimension (N) !> The vector with the exact column norms. !>
AUXV
!> AUXV is COMPLEX array, dimension (NB) !> Auxiliary vector. !>
F
!> F is COMPLEX array, dimension (LDF,NB) !> Matrix F**H = L * Y**H * A. !>
LDF
!> LDF is INTEGER !> The leading dimension of the array F. LDF >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z.
Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
References:
Definition at line 176 of file claqps.f.
subroutine DLAQPS (integer m, integer n, integer offset, integer nb, integer kb, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, double precision, dimension( * ) tau, double precision, dimension( * ) vn1, double precision, dimension( * ) vn2, double precision, dimension( * ) auxv, double precision, dimension( ldf, * ) f, integer ldf)¶
DLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
Purpose:
!> !> DLAQPS computes a step of QR factorization with column pivoting !> of a real M-by-N matrix A by using Blas-3. It tries to factorize !> NB columns from A starting from the row OFFSET+1, and updates all !> of the matrix with Blas-3 xGEMM. !> !> In some cases, due to catastrophic cancellations, it cannot !> factorize NB columns. Hence, the actual number of factorized !> columns is returned in KB. !> !> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0 !>
OFFSET
!> OFFSET is INTEGER !> The number of rows of A that have been factorized in !> previous steps. !>
NB
!> NB is INTEGER !> The number of columns to factorize. !>
KB
!> KB is INTEGER !> The number of columns actually factorized. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, block A(OFFSET+1:M,1:KB) is the triangular !> factor obtained and block A(1:OFFSET,1:N) has been !> accordingly pivoted, but no factorized. !> The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has !> been updated. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
JPVT
!> JPVT is INTEGER array, dimension (N) !> JPVT(I) = K <==> Column K of the full matrix A has been !> permuted into position I in AP. !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (KB) !> The scalar factors of the elementary reflectors. !>
VN1
!> VN1 is DOUBLE PRECISION array, dimension (N) !> The vector with the partial column norms. !>
VN2
!> VN2 is DOUBLE PRECISION array, dimension (N) !> The vector with the exact column norms. !>
AUXV
!> AUXV is DOUBLE PRECISION array, dimension (NB) !> Auxiliary vector. !>
F
!> F is DOUBLE PRECISION array, dimension (LDF,NB) !> Matrix F**T = L*Y**T*A. !>
LDF
!> LDF is INTEGER !> The leading dimension of the array F. LDF >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
References:
Definition at line 175 of file dlaqps.f.
subroutine SLAQPS (integer m, integer n, integer offset, integer nb, integer kb, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, real, dimension( * ) tau, real, dimension( * ) vn1, real, dimension( * ) vn2, real, dimension( * ) auxv, real, dimension( ldf, * ) f, integer ldf)¶
SLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
Purpose:
!> !> SLAQPS computes a step of QR factorization with column pivoting !> of a real M-by-N matrix A by using Blas-3. It tries to factorize !> NB columns from A starting from the row OFFSET+1, and updates all !> of the matrix with Blas-3 xGEMM. !> !> In some cases, due to catastrophic cancellations, it cannot !> factorize NB columns. Hence, the actual number of factorized !> columns is returned in KB. !> !> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0 !>
OFFSET
!> OFFSET is INTEGER !> The number of rows of A that have been factorized in !> previous steps. !>
NB
!> NB is INTEGER !> The number of columns to factorize. !>
KB
!> KB is INTEGER !> The number of columns actually factorized. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, block A(OFFSET+1:M,1:KB) is the triangular !> factor obtained and block A(1:OFFSET,1:N) has been !> accordingly pivoted, but no factorized. !> The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has !> been updated. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
JPVT
!> JPVT is INTEGER array, dimension (N) !> JPVT(I) = K <==> Column K of the full matrix A has been !> permuted into position I in AP. !>
TAU
!> TAU is REAL array, dimension (KB) !> The scalar factors of the elementary reflectors. !>
VN1
!> VN1 is REAL array, dimension (N) !> The vector with the partial column norms. !>
VN2
!> VN2 is REAL array, dimension (N) !> The vector with the exact column norms. !>
AUXV
!> AUXV is REAL array, dimension (NB) !> Auxiliary vector. !>
F
!> F is REAL array, dimension (LDF,NB) !> Matrix F**T = L*Y**T*A. !>
LDF
!> LDF is INTEGER !> The leading dimension of the array F. LDF >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z.
Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
References:
Definition at line 176 of file slaqps.f.
subroutine ZLAQPS (integer m, integer n, integer offset, integer nb, integer kb, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex*16, dimension( * ) tau, double precision, dimension( * ) vn1, double precision, dimension( * ) vn2, complex*16, dimension( * ) auxv, complex*16, dimension( ldf, * ) f, integer ldf)¶
ZLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
Purpose:
!> !> ZLAQPS computes a step of QR factorization with column pivoting !> of a complex M-by-N matrix A by using Blas-3. It tries to factorize !> NB columns from A starting from the row OFFSET+1, and updates all !> of the matrix with Blas-3 xGEMM. !> !> In some cases, due to catastrophic cancellations, it cannot !> factorize NB columns. Hence, the actual number of factorized !> columns is returned in KB. !> !> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0 !>
OFFSET
!> OFFSET is INTEGER !> The number of rows of A that have been factorized in !> previous steps. !>
NB
!> NB is INTEGER !> The number of columns to factorize. !>
KB
!> KB is INTEGER !> The number of columns actually factorized. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, block A(OFFSET+1:M,1:KB) is the triangular !> factor obtained and block A(1:OFFSET,1:N) has been !> accordingly pivoted, but no factorized. !> The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has !> been updated. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
JPVT
!> JPVT is INTEGER array, dimension (N) !> JPVT(I) = K <==> Column K of the full matrix A has been !> permuted into position I in AP. !>
TAU
!> TAU is COMPLEX*16 array, dimension (KB) !> The scalar factors of the elementary reflectors. !>
VN1
!> VN1 is DOUBLE PRECISION array, dimension (N) !> The vector with the partial column norms. !>
VN2
!> VN2 is DOUBLE PRECISION array, dimension (N) !> The vector with the exact column norms. !>
AUXV
!> AUXV is COMPLEX*16 array, dimension (NB) !> Auxiliary vector. !>
F
!> F is COMPLEX*16 array, dimension (LDF,NB) !> Matrix F**H = L * Y**H * A. !>
LDF
!> LDF is INTEGER !> The leading dimension of the array F. LDF >= max(1,N). !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
References:
Definition at line 175 of file zlaqps.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |