table of contents
laqp2(3) | Library Functions Manual | laqp2(3) |
NAME¶
laqp2 - laqp2: step of geqp3
SYNOPSIS¶
Functions¶
subroutine CLAQP2 (m, n, offset, a, lda, jpvt, tau, vn1,
vn2, work)
CLAQP2 computes a QR factorization with column pivoting of the matrix
block. subroutine DLAQP2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2,
work)
DLAQP2 computes a QR factorization with column pivoting of the matrix
block. subroutine SLAQP2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2,
work)
SLAQP2 computes a QR factorization with column pivoting of the matrix
block. subroutine ZLAQP2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2,
work)
ZLAQP2 computes a QR factorization with column pivoting of the matrix
block.
Detailed Description¶
Function Documentation¶
subroutine CLAQP2 (integer m, integer n, integer offset, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex, dimension( * ) tau, real, dimension( * ) vn1, real, dimension( * ) vn2, complex, dimension( * ) work)¶
CLAQP2 computes a QR factorization with column pivoting of the matrix block.
Purpose:
!> !> CLAQP2 computes a QR factorization with column pivoting of !> the block A(OFFSET+1:M,1:N). !> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
OFFSET
!> OFFSET is INTEGER !> The number of rows of the matrix A that must be pivoted !> but no factorized. OFFSET >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the upper triangle of block A(OFFSET+1:M,1:N) is !> the triangular factor obtained; the elements in block !> A(OFFSET+1:M,1:N) below the diagonal, together with the !> array TAU, represent the orthogonal matrix Q as a product of !> elementary reflectors. Block A(1:OFFSET,1:N) has been !> accordingly pivoted, but no factorized. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
JPVT
!> JPVT is INTEGER array, dimension (N) !> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted !> to the front of A*P (a leading column); if JPVT(i) = 0, !> the i-th column of A is a free column. !> On exit, if JPVT(i) = k, then the i-th column of A*P !> was the k-th column of A. !>
TAU
!> TAU is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors. !>
VN1
!> VN1 is REAL array, dimension (N) !> The vector with the partial column norms. !>
VN2
!> VN2 is REAL array, dimension (N) !> The vector with the exact column norms. !>
WORK
!> WORK is COMPLEX array, dimension (N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
References:
Definition at line 147 of file claqp2.f.
subroutine DLAQP2 (integer m, integer n, integer offset, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, double precision, dimension( * ) tau, double precision, dimension( * ) vn1, double precision, dimension( * ) vn2, double precision, dimension( * ) work)¶
DLAQP2 computes a QR factorization with column pivoting of the matrix block.
Purpose:
!> !> DLAQP2 computes a QR factorization with column pivoting of !> the block A(OFFSET+1:M,1:N). !> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
OFFSET
!> OFFSET is INTEGER !> The number of rows of the matrix A that must be pivoted !> but no factorized. OFFSET >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the upper triangle of block A(OFFSET+1:M,1:N) is !> the triangular factor obtained; the elements in block !> A(OFFSET+1:M,1:N) below the diagonal, together with the !> array TAU, represent the orthogonal matrix Q as a product of !> elementary reflectors. Block A(1:OFFSET,1:N) has been !> accordingly pivoted, but no factorized. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
JPVT
!> JPVT is INTEGER array, dimension (N) !> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted !> to the front of A*P (a leading column); if JPVT(i) = 0, !> the i-th column of A is a free column. !> On exit, if JPVT(i) = k, then the i-th column of A*P !> was the k-th column of A. !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors. !>
VN1
!> VN1 is DOUBLE PRECISION array, dimension (N) !> The vector with the partial column norms. !>
VN2
!> VN2 is DOUBLE PRECISION array, dimension (N) !> The vector with the exact column norms. !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
References:
Definition at line 147 of file dlaqp2.f.
subroutine SLAQP2 (integer m, integer n, integer offset, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, real, dimension( * ) tau, real, dimension( * ) vn1, real, dimension( * ) vn2, real, dimension( * ) work)¶
SLAQP2 computes a QR factorization with column pivoting of the matrix block.
Purpose:
!> !> SLAQP2 computes a QR factorization with column pivoting of !> the block A(OFFSET+1:M,1:N). !> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
OFFSET
!> OFFSET is INTEGER !> The number of rows of the matrix A that must be pivoted !> but no factorized. OFFSET >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the upper triangle of block A(OFFSET+1:M,1:N) is !> the triangular factor obtained; the elements in block !> A(OFFSET+1:M,1:N) below the diagonal, together with the !> array TAU, represent the orthogonal matrix Q as a product of !> elementary reflectors. Block A(1:OFFSET,1:N) has been !> accordingly pivoted, but no factorized. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
JPVT
!> JPVT is INTEGER array, dimension (N) !> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted !> to the front of A*P (a leading column); if JPVT(i) = 0, !> the i-th column of A is a free column. !> On exit, if JPVT(i) = k, then the i-th column of A*P !> was the k-th column of A. !>
TAU
!> TAU is REAL array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors. !>
VN1
!> VN1 is REAL array, dimension (N) !> The vector with the partial column norms. !>
VN2
!> VN2 is REAL array, dimension (N) !> The vector with the exact column norms. !>
WORK
!> WORK is REAL array, dimension (N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
References:
Definition at line 147 of file slaqp2.f.
subroutine ZLAQP2 (integer m, integer n, integer offset, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex*16, dimension( * ) tau, double precision, dimension( * ) vn1, double precision, dimension( * ) vn2, complex*16, dimension( * ) work)¶
ZLAQP2 computes a QR factorization with column pivoting of the matrix block.
Purpose:
!> !> ZLAQP2 computes a QR factorization with column pivoting of !> the block A(OFFSET+1:M,1:N). !> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
OFFSET
!> OFFSET is INTEGER !> The number of rows of the matrix A that must be pivoted !> but no factorized. OFFSET >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the upper triangle of block A(OFFSET+1:M,1:N) is !> the triangular factor obtained; the elements in block !> A(OFFSET+1:M,1:N) below the diagonal, together with the !> array TAU, represent the orthogonal matrix Q as a product of !> elementary reflectors. Block A(1:OFFSET,1:N) has been !> accordingly pivoted, but no factorized. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
JPVT
!> JPVT is INTEGER array, dimension (N) !> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted !> to the front of A*P (a leading column); if JPVT(i) = 0, !> the i-th column of A is a free column. !> On exit, if JPVT(i) = k, then the i-th column of A*P !> was the k-th column of A. !>
TAU
!> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors. !>
VN1
!> VN1 is DOUBLE PRECISION array, dimension (N) !> The vector with the partial column norms. !>
VN2
!> VN2 is DOUBLE PRECISION array, dimension (N) !> The vector with the exact column norms. !>
WORK
!> WORK is COMPLEX*16 array, dimension (N) !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
References:
Definition at line 147 of file zlaqp2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |