table of contents
lanht(3) | Library Functions Manual | lanht(3) |
NAME¶
lanht - lan{ht,st}: Hermitian/symmetric matrix, tridiagonal
SYNOPSIS¶
Functions¶
real function CLANHT (norm, n, d, e)
CLANHT returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a complex
Hermitian tridiagonal matrix. double precision function DLANST (norm,
n, d, e)
DLANST returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a real symmetric
tridiagonal matrix. real function SLANST (norm, n, d, e)
SLANST returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a real symmetric
tridiagonal matrix. double precision function ZLANHT (norm, n, d, e)
ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a complex
Hermitian tridiagonal matrix.
Detailed Description¶
Function Documentation¶
real function CLANHT (character norm, integer n, real, dimension( * ) d, complex, dimension( * ) e)¶
CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.
Purpose:
!> !> CLANHT returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex Hermitian tridiagonal matrix A. !>
Returns
!> !> CLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in CLANHT as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, CLANHT is !> set to zero. !>
D
!> D is REAL array, dimension (N) !> The diagonal elements of A. !>
E
!> E is COMPLEX array, dimension (N-1) !> The (n-1) sub-diagonal or super-diagonal elements of A. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 100 of file clanht.f.
double precision function DLANST (character norm, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e)¶
DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
Purpose:
!> !> DLANST returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real symmetric tridiagonal matrix A. !>
Returns
!> !> DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in DLANST as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, DLANST is !> set to zero. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The diagonal elements of A. !>
E
!> E is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) sub-diagonal or super-diagonal elements of A. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 99 of file dlanst.f.
real function SLANST (character norm, integer n, real, dimension( * ) d, real, dimension( * ) e)¶
SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
Purpose:
!> !> SLANST returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real symmetric tridiagonal matrix A. !>
Returns
!> !> SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in SLANST as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, SLANST is !> set to zero. !>
D
!> D is REAL array, dimension (N) !> The diagonal elements of A. !>
E
!> E is REAL array, dimension (N-1) !> The (n-1) sub-diagonal or super-diagonal elements of A. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 99 of file slanst.f.
double precision function ZLANHT (character norm, integer n, double precision, dimension( * ) d, complex*16, dimension( * ) e)¶
ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.
Purpose:
!> !> ZLANHT returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex Hermitian tridiagonal matrix A. !>
Returns
!> !> ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in ZLANHT as described !> above. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, ZLANHT is !> set to zero. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The diagonal elements of A. !>
E
!> E is COMPLEX*16 array, dimension (N-1) !> The (n-1) sub-diagonal or super-diagonal elements of A. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 100 of file zlanht.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |