table of contents
lange(3) | Library Functions Manual | lange(3) |
NAME¶
lange - lange: general matrix
SYNOPSIS¶
Functions¶
real function CLANGE (norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element of a general rectangular
matrix. double precision function DLANGE (norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element of a general rectangular
matrix. real function SLANGE (norm, m, n, a, lda, work)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element of a general rectangular
matrix. double precision function ZLANGE (norm, m, n, a, lda, work)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element of a general rectangular
matrix.
Detailed Description¶
Function Documentation¶
real function CLANGE (character norm, integer m, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) work)¶
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
Purpose:
!> !> CLANGE returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex matrix A. !>
Returns
!> !> CLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in CLANGE as described !> above. !>
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. When M = 0, !> CLANGE is set to zero. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. When N = 0, !> CLANGE is set to zero. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> The m by n matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(M,1). !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)), !> where LWORK >= M when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 114 of file clange.f.
double precision function DLANGE (character norm, integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) work)¶
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
Purpose:
!> !> DLANGE returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real matrix A. !>
Returns
!> !> DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in DLANGE as described !> above. !>
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. When M = 0, !> DLANGE is set to zero. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. When N = 0, !> DLANGE is set to zero. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> The m by n matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(M,1). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= M when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 113 of file dlange.f.
real function SLANGE (character norm, integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) work)¶
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
Purpose:
!> !> SLANGE returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real matrix A. !>
Returns
!> !> SLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in SLANGE as described !> above. !>
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. When M = 0, !> SLANGE is set to zero. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. When N = 0, !> SLANGE is set to zero. !>
A
!> A is REAL array, dimension (LDA,N) !> The m by n matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(M,1). !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)), !> where LWORK >= M when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 113 of file slange.f.
double precision function ZLANGE (character norm, integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) work)¶
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
Purpose:
!> !> ZLANGE returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex matrix A. !>
Returns
!> !> ZLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
!> NORM is CHARACTER*1 !> Specifies the value to be returned in ZLANGE as described !> above. !>
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. When M = 0, !> ZLANGE is set to zero. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. When N = 0, !> ZLANGE is set to zero. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The m by n matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(M,1). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= M when NORM = 'I'; otherwise, WORK is not !> referenced. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 114 of file zlange.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |