table of contents
lag2(3) | Library Functions Manual | lag2(3) |
NAME¶
lag2 - lag2: 2x2 eig
SYNOPSIS¶
Functions¶
subroutine DLAG2 (a, lda, b, ldb, safmin, scale1, scale2,
wr1, wr2, wi)
DLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue
problem, with scaling as necessary to avoid over-/underflow. subroutine
SLAG2 (a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)
SLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue
problem, with scaling as necessary to avoid over-/underflow.
Detailed Description¶
Function Documentation¶
subroutine DLAG2 (double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision safmin, double precision scale1, double precision scale2, double precision wr1, double precision wr2, double precision wi)¶
DLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow.
Purpose:
!> !> DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue !> problem A - w B, with scaling as necessary to avoid over-/underflow. !> !> The scaling factor results in a modified eigenvalue equation !> !> s A - w B !> !> where s is a non-negative scaling factor chosen so that w, w B, !> and s A do not overflow and, if possible, do not underflow, either. !>
Parameters
!> A is DOUBLE PRECISION array, dimension (LDA, 2) !> On entry, the 2 x 2 matrix A. It is assumed that its 1-norm !> is less than 1/SAFMIN. Entries less than !> sqrt(SAFMIN)*norm(A) are subject to being treated as zero. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= 2. !>
B
!> B is DOUBLE PRECISION array, dimension (LDB, 2) !> On entry, the 2 x 2 upper triangular matrix B. It is !> assumed that the one-norm of B is less than 1/SAFMIN. The !> diagonals should be at least sqrt(SAFMIN) times the largest !> element of B (in absolute value); if a diagonal is smaller !> than that, then +/- sqrt(SAFMIN) will be used instead of !> that diagonal. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= 2. !>
SAFMIN
!> SAFMIN is DOUBLE PRECISION !> The smallest positive number s.t. 1/SAFMIN does not !> overflow. (This should always be DLAMCH('S') -- it is an !> argument in order to avoid having to call DLAMCH frequently.) !>
SCALE1
!> SCALE1 is DOUBLE PRECISION !> A scaling factor used to avoid over-/underflow in the !> eigenvalue equation which defines the first eigenvalue. If !> the eigenvalues are complex, then the eigenvalues are !> ( WR1 +/- WI i ) / SCALE1 (which may lie outside the !> exponent range of the machine), SCALE1=SCALE2, and SCALE1 !> will always be positive. If the eigenvalues are real, then !> the first (real) eigenvalue is WR1 / SCALE1 , but this may !> overflow or underflow, and in fact, SCALE1 may be zero or !> less than the underflow threshold if the exact eigenvalue !> is sufficiently large. !>
SCALE2
!> SCALE2 is DOUBLE PRECISION !> A scaling factor used to avoid over-/underflow in the !> eigenvalue equation which defines the second eigenvalue. If !> the eigenvalues are complex, then SCALE2=SCALE1. If the !> eigenvalues are real, then the second (real) eigenvalue is !> WR2 / SCALE2 , but this may overflow or underflow, and in !> fact, SCALE2 may be zero or less than the underflow !> threshold if the exact eigenvalue is sufficiently large. !>
WR1
!> WR1 is DOUBLE PRECISION !> If the eigenvalue is real, then WR1 is SCALE1 times the !> eigenvalue closest to the (2,2) element of A B**(-1). If the !> eigenvalue is complex, then WR1=WR2 is SCALE1 times the real !> part of the eigenvalues. !>
WR2
!> WR2 is DOUBLE PRECISION !> If the eigenvalue is real, then WR2 is SCALE2 times the !> other eigenvalue. If the eigenvalue is complex, then !> WR1=WR2 is SCALE1 times the real part of the eigenvalues. !>
WI
!> WI is DOUBLE PRECISION !> If the eigenvalue is real, then WI is zero. If the !> eigenvalue is complex, then WI is SCALE1 times the imaginary !> part of the eigenvalues. WI will always be non-negative. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 154 of file dlag2.f.
subroutine SLAG2 (real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real safmin, real scale1, real scale2, real wr1, real wr2, real wi)¶
SLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow.
Purpose:
!> !> SLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue !> problem A - w B, with scaling as necessary to avoid over-/underflow. !> !> The scaling factor results in a modified eigenvalue equation !> !> s A - w B !> !> where s is a non-negative scaling factor chosen so that w, w B, !> and s A do not overflow and, if possible, do not underflow, either. !>
Parameters
!> A is REAL array, dimension (LDA, 2) !> On entry, the 2 x 2 matrix A. It is assumed that its 1-norm !> is less than 1/SAFMIN. Entries less than !> sqrt(SAFMIN)*norm(A) are subject to being treated as zero. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= 2. !>
B
!> B is REAL array, dimension (LDB, 2) !> On entry, the 2 x 2 upper triangular matrix B. It is !> assumed that the one-norm of B is less than 1/SAFMIN. The !> diagonals should be at least sqrt(SAFMIN) times the largest !> element of B (in absolute value); if a diagonal is smaller !> than that, then +/- sqrt(SAFMIN) will be used instead of !> that diagonal. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= 2. !>
SAFMIN
!> SAFMIN is REAL !> The smallest positive number s.t. 1/SAFMIN does not !> overflow. (This should always be SLAMCH('S') -- it is an !> argument in order to avoid having to call SLAMCH frequently.) !>
SCALE1
!> SCALE1 is REAL !> A scaling factor used to avoid over-/underflow in the !> eigenvalue equation which defines the first eigenvalue. If !> the eigenvalues are complex, then the eigenvalues are !> ( WR1 +/- WI i ) / SCALE1 (which may lie outside the !> exponent range of the machine), SCALE1=SCALE2, and SCALE1 !> will always be positive. If the eigenvalues are real, then !> the first (real) eigenvalue is WR1 / SCALE1 , but this may !> overflow or underflow, and in fact, SCALE1 may be zero or !> less than the underflow threshold if the exact eigenvalue !> is sufficiently large. !>
SCALE2
!> SCALE2 is REAL !> A scaling factor used to avoid over-/underflow in the !> eigenvalue equation which defines the second eigenvalue. If !> the eigenvalues are complex, then SCALE2=SCALE1. If the !> eigenvalues are real, then the second (real) eigenvalue is !> WR2 / SCALE2 , but this may overflow or underflow, and in !> fact, SCALE2 may be zero or less than the underflow !> threshold if the exact eigenvalue is sufficiently large. !>
WR1
!> WR1 is REAL !> If the eigenvalue is real, then WR1 is SCALE1 times the !> eigenvalue closest to the (2,2) element of A B**(-1). If the !> eigenvalue is complex, then WR1=WR2 is SCALE1 times the real !> part of the eigenvalues. !>
WR2
!> WR2 is REAL !> If the eigenvalue is real, then WR2 is SCALE2 times the !> other eigenvalue. If the eigenvalue is complex, then !> WR1=WR2 is SCALE1 times the real part of the eigenvalues. !>
WI
!> WI is REAL !> If the eigenvalue is real, then WI is zero. If the !> eigenvalue is complex, then WI is SCALE1 times the imaginary !> part of the eigenvalues. WI will always be non-negative. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 154 of file slag2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |