Scroll to navigation

laed4(3) Library Functions Manual laed4(3)

NAME

laed4 - laed4: D&C step: secular equation nonlinear solver

SYNOPSIS

Functions


subroutine DLAED4 (n, i, d, z, delta, rho, dlam, info)
DLAED4 used by DSTEDC. Finds a single root of the secular equation. subroutine SLAED4 (n, i, d, z, delta, rho, dlam, info)
SLAED4 used by SSTEDC. Finds a single root of the secular equation.

Detailed Description

Function Documentation

subroutine DLAED4 (integer n, integer i, double precision, dimension( * ) d, double precision, dimension( * ) z, double precision, dimension( * ) delta, double precision rho, double precision dlam, integer info)

DLAED4 used by DSTEDC. Finds a single root of the secular equation.

Purpose:

!>
!> This subroutine computes the I-th updated eigenvalue of a symmetric
!> rank-one modification to a diagonal matrix whose elements are
!> given in the array d, and that
!>
!>            D(i) < D(j)  for  i < j
!>
!> and that RHO > 0.  This is arranged by the calling routine, and is
!> no loss in generality.  The rank-one modified system is thus
!>
!>            diag( D )  +  RHO * Z * Z_transpose.
!>
!> where we assume the Euclidean norm of Z is 1.
!>
!> The method consists of approximating the rational functions in the
!> secular equation by simpler interpolating rational functions.
!> 

Parameters

N

!>          N is INTEGER
!>         The length of all arrays.
!> 

I

!>          I is INTEGER
!>         The index of the eigenvalue to be computed.  1 <= I <= N.
!> 

D

!>          D is DOUBLE PRECISION array, dimension (N)
!>         The original eigenvalues.  It is assumed that they are in
!>         order, D(I) < D(J)  for I < J.
!> 

Z

!>          Z is DOUBLE PRECISION array, dimension (N)
!>         The components of the updating vector.
!> 

DELTA

!>          DELTA is DOUBLE PRECISION array, dimension (N)
!>         If N > 2, DELTA contains (D(j) - lambda_I) in its  j-th
!>         component.  If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5
!>         for detail. The vector DELTA contains the information necessary
!>         to construct the eigenvectors by DLAED3 and DLAED9.
!> 

RHO

!>          RHO is DOUBLE PRECISION
!>         The scalar in the symmetric updating formula.
!> 

DLAM

!>          DLAM is DOUBLE PRECISION
!>         The computed lambda_I, the I-th updated eigenvalue.
!> 

INFO

!>          INFO is INTEGER
!>         = 0:  successful exit
!>         > 0:  if INFO = 1, the updating process failed.
!> 

Internal Parameters:

!>  Logical variable ORGATI (origin-at-i?) is used for distinguishing
!>  whether D(i) or D(i+1) is treated as the origin.
!>
!>            ORGATI = .true.    origin at i
!>            ORGATI = .false.   origin at i+1
!>
!>   Logical variable SWTCH3 (switch-for-3-poles?) is for noting
!>   if we are working with THREE poles!
!>
!>   MAXIT is the maximum number of iterations allowed for each
!>   eigenvalue.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA

Definition at line 144 of file dlaed4.f.

subroutine SLAED4 (integer n, integer i, real, dimension( * ) d, real, dimension( * ) z, real, dimension( * ) delta, real rho, real dlam, integer info)

SLAED4 used by SSTEDC. Finds a single root of the secular equation.

Purpose:

!>
!> This subroutine computes the I-th updated eigenvalue of a symmetric
!> rank-one modification to a diagonal matrix whose elements are
!> given in the array d, and that
!>
!>            D(i) < D(j)  for  i < j
!>
!> and that RHO > 0.  This is arranged by the calling routine, and is
!> no loss in generality.  The rank-one modified system is thus
!>
!>            diag( D )  +  RHO * Z * Z_transpose.
!>
!> where we assume the Euclidean norm of Z is 1.
!>
!> The method consists of approximating the rational functions in the
!> secular equation by simpler interpolating rational functions.
!> 

Parameters

N

!>          N is INTEGER
!>         The length of all arrays.
!> 

I

!>          I is INTEGER
!>         The index of the eigenvalue to be computed.  1 <= I <= N.
!> 

D

!>          D is REAL array, dimension (N)
!>         The original eigenvalues.  It is assumed that they are in
!>         order, D(I) < D(J)  for I < J.
!> 

Z

!>          Z is REAL array, dimension (N)
!>         The components of the updating vector.
!> 

DELTA

!>          DELTA is REAL array, dimension (N)
!>         If N > 2, DELTA contains (D(j) - lambda_I) in its  j-th
!>         component.  If N = 1, then DELTA(1) = 1. If N = 2, see SLAED5
!>         for detail. The vector DELTA contains the information necessary
!>         to construct the eigenvectors by SLAED3 and SLAED9.
!> 

RHO

!>          RHO is REAL
!>         The scalar in the symmetric updating formula.
!> 

DLAM

!>          DLAM is REAL
!>         The computed lambda_I, the I-th updated eigenvalue.
!> 

INFO

!>          INFO is INTEGER
!>         = 0:  successful exit
!>         > 0:  if INFO = 1, the updating process failed.
!> 

Internal Parameters:

!>  Logical variable ORGATI (origin-at-i?) is used for distinguishing
!>  whether D(i) or D(i+1) is treated as the origin.
!>
!>            ORGATI = .true.    origin at i
!>            ORGATI = .false.   origin at i+1
!>
!>   Logical variable SWTCH3 (switch-for-3-poles?) is for noting
!>   if we are working with THREE poles!
!>
!>   MAXIT is the maximum number of iterations allowed for each
!>   eigenvalue.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA

Definition at line 144 of file slaed4.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK