table of contents
laed4(3) | Library Functions Manual | laed4(3) |
NAME¶
laed4 - laed4: D&C step: secular equation nonlinear solver
SYNOPSIS¶
Functions¶
subroutine DLAED4 (n, i, d, z, delta, rho, dlam, info)
DLAED4 used by DSTEDC. Finds a single root of the secular equation.
subroutine SLAED4 (n, i, d, z, delta, rho, dlam, info)
SLAED4 used by SSTEDC. Finds a single root of the secular equation.
Detailed Description¶
Function Documentation¶
subroutine DLAED4 (integer n, integer i, double precision, dimension( * ) d, double precision, dimension( * ) z, double precision, dimension( * ) delta, double precision rho, double precision dlam, integer info)¶
DLAED4 used by DSTEDC. Finds a single root of the secular equation.
Purpose:
!> !> This subroutine computes the I-th updated eigenvalue of a symmetric !> rank-one modification to a diagonal matrix whose elements are !> given in the array d, and that !> !> D(i) < D(j) for i < j !> !> and that RHO > 0. This is arranged by the calling routine, and is !> no loss in generality. The rank-one modified system is thus !> !> diag( D ) + RHO * Z * Z_transpose. !> !> where we assume the Euclidean norm of Z is 1. !> !> The method consists of approximating the rational functions in the !> secular equation by simpler interpolating rational functions. !>
Parameters
!> N is INTEGER !> The length of all arrays. !>
I
!> I is INTEGER !> The index of the eigenvalue to be computed. 1 <= I <= N. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The original eigenvalues. It is assumed that they are in !> order, D(I) < D(J) for I < J. !>
Z
!> Z is DOUBLE PRECISION array, dimension (N) !> The components of the updating vector. !>
DELTA
!> DELTA is DOUBLE PRECISION array, dimension (N) !> If N > 2, DELTA contains (D(j) - lambda_I) in its j-th !> component. If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5 !> for detail. The vector DELTA contains the information necessary !> to construct the eigenvectors by DLAED3 and DLAED9. !>
RHO
!> RHO is DOUBLE PRECISION !> The scalar in the symmetric updating formula. !>
DLAM
!> DLAM is DOUBLE PRECISION !> The computed lambda_I, the I-th updated eigenvalue. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> > 0: if INFO = 1, the updating process failed. !>
Internal Parameters:
!> Logical variable ORGATI (origin-at-i?) is used for distinguishing !> whether D(i) or D(i+1) is treated as the origin. !> !> ORGATI = .true. origin at i !> ORGATI = .false. origin at i+1 !> !> Logical variable SWTCH3 (switch-for-3-poles?) is for noting !> if we are working with THREE poles! !> !> MAXIT is the maximum number of iterations allowed for each !> eigenvalue. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 144 of file dlaed4.f.
subroutine SLAED4 (integer n, integer i, real, dimension( * ) d, real, dimension( * ) z, real, dimension( * ) delta, real rho, real dlam, integer info)¶
SLAED4 used by SSTEDC. Finds a single root of the secular equation.
Purpose:
!> !> This subroutine computes the I-th updated eigenvalue of a symmetric !> rank-one modification to a diagonal matrix whose elements are !> given in the array d, and that !> !> D(i) < D(j) for i < j !> !> and that RHO > 0. This is arranged by the calling routine, and is !> no loss in generality. The rank-one modified system is thus !> !> diag( D ) + RHO * Z * Z_transpose. !> !> where we assume the Euclidean norm of Z is 1. !> !> The method consists of approximating the rational functions in the !> secular equation by simpler interpolating rational functions. !>
Parameters
!> N is INTEGER !> The length of all arrays. !>
I
!> I is INTEGER !> The index of the eigenvalue to be computed. 1 <= I <= N. !>
D
!> D is REAL array, dimension (N) !> The original eigenvalues. It is assumed that they are in !> order, D(I) < D(J) for I < J. !>
Z
!> Z is REAL array, dimension (N) !> The components of the updating vector. !>
DELTA
!> DELTA is REAL array, dimension (N) !> If N > 2, DELTA contains (D(j) - lambda_I) in its j-th !> component. If N = 1, then DELTA(1) = 1. If N = 2, see SLAED5 !> for detail. The vector DELTA contains the information necessary !> to construct the eigenvectors by SLAED3 and SLAED9. !>
RHO
!> RHO is REAL !> The scalar in the symmetric updating formula. !>
DLAM
!> DLAM is REAL !> The computed lambda_I, the I-th updated eigenvalue. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> > 0: if INFO = 1, the updating process failed. !>
Internal Parameters:
!> Logical variable ORGATI (origin-at-i?) is used for distinguishing !> whether D(i) or D(i+1) is treated as the origin. !> !> ORGATI = .true. origin at i !> ORGATI = .false. origin at i+1 !> !> Logical variable SWTCH3 (switch-for-3-poles?) is for noting !> if we are working with THREE poles! !> !> MAXIT is the maximum number of iterations allowed for each !> eigenvalue. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 144 of file slaed4.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |