table of contents
lae2(3) | Library Functions Manual | lae2(3) |
NAME¶
lae2 - lae2: 2x2 eig, step in steqr, stemr
SYNOPSIS¶
Functions¶
subroutine DLAE2 (a, b, c, rt1, rt2)
DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix. subroutine
SLAE2 (a, b, c, rt1, rt2)
SLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix.
Detailed Description¶
Function Documentation¶
subroutine DLAE2 (double precision a, double precision b, double precision c, double precision rt1, double precision rt2)¶
DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix.
Purpose:
!> !> DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix !> [ A B ] !> [ B C ]. !> On return, RT1 is the eigenvalue of larger absolute value, and RT2 !> is the eigenvalue of smaller absolute value. !>
Parameters
A
!> A is DOUBLE PRECISION !> The (1,1) element of the 2-by-2 matrix. !>
B
!> B is DOUBLE PRECISION !> The (1,2) and (2,1) elements of the 2-by-2 matrix. !>
C
!> C is DOUBLE PRECISION !> The (2,2) element of the 2-by-2 matrix. !>
RT1
!> RT1 is DOUBLE PRECISION !> The eigenvalue of larger absolute value. !>
RT2
!> RT2 is DOUBLE PRECISION !> The eigenvalue of smaller absolute value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> RT1 is accurate to a few ulps barring over/underflow. !> !> RT2 may be inaccurate if there is massive cancellation in the !> determinant A*C-B*B; higher precision or correctly rounded or !> correctly truncated arithmetic would be needed to compute RT2 !> accurately in all cases. !> !> Overflow is possible only if RT1 is within a factor of 5 of overflow. !> Underflow is harmless if the input data is 0 or exceeds !> underflow_threshold / macheps. !>
Definition at line 101 of file dlae2.f.
subroutine SLAE2 (real a, real b, real c, real rt1, real rt2)¶
SLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix.
Purpose:
!> !> SLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix !> [ A B ] !> [ B C ]. !> On return, RT1 is the eigenvalue of larger absolute value, and RT2 !> is the eigenvalue of smaller absolute value. !>
Parameters
A
!> A is REAL !> The (1,1) element of the 2-by-2 matrix. !>
B
!> B is REAL !> The (1,2) and (2,1) elements of the 2-by-2 matrix. !>
C
!> C is REAL !> The (2,2) element of the 2-by-2 matrix. !>
RT1
!> RT1 is REAL !> The eigenvalue of larger absolute value. !>
RT2
!> RT2 is REAL !> The eigenvalue of smaller absolute value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> RT1 is accurate to a few ulps barring over/underflow. !> !> RT2 may be inaccurate if there is massive cancellation in the !> determinant A*C-B*B; higher precision or correctly rounded or !> correctly truncated arithmetic would be needed to compute RT2 !> accurately in all cases. !> !> Overflow is possible only if RT1 is within a factor of 5 of overflow. !> Underflow is harmless if the input data is 0 or exceeds !> underflow_threshold / macheps. !>
Definition at line 101 of file slae2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |