table of contents
la_gbamv(3) | Library Functions Manual | la_gbamv(3) |
NAME¶
la_gbamv - la_gbamv: matrix-vector multiply |A| * |x|, general banded
SYNOPSIS¶
Functions¶
subroutine CLA_GBAMV (trans, m, n, kl, ku, alpha, ab, ldab,
x, incx, beta, y, incy)
CLA_GBAMV performs a matrix-vector operation to calculate error bounds.
subroutine DLA_GBAMV (trans, m, n, kl, ku, alpha, ab, ldab, x, incx,
beta, y, incy)
DLA_GBAMV performs a matrix-vector operation to calculate error bounds.
subroutine SLA_GBAMV (trans, m, n, kl, ku, alpha, ab, ldab, x, incx,
beta, y, incy)
SLA_GBAMV performs a matrix-vector operation to calculate error bounds.
subroutine ZLA_GBAMV (trans, m, n, kl, ku, alpha, ab, ldab, x, incx,
beta, y, incy)
ZLA_GBAMV performs a matrix-vector operation to calculate error bounds.
Detailed Description¶
Function Documentation¶
subroutine CLA_GBAMV (integer trans, integer m, integer n, integer kl, integer ku, real alpha, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( * ) x, integer incx, real beta, real, dimension( * ) y, integer incy)¶
CLA_GBAMV performs a matrix-vector operation to calculate error bounds.
Purpose:
!> !> CLA_GBAMV performs one of the matrix-vector operations !> !> y := alpha*abs(A)*abs(x) + beta*abs(y), !> or y := alpha*abs(A)**T*abs(x) + beta*abs(y), !> !> where alpha and beta are scalars, x and y are vectors and A is an !> m by n matrix. !> !> This function is primarily used in calculating error bounds. !> To protect against underflow during evaluation, components in !> the resulting vector are perturbed away from zero by (N+1) !> times the underflow threshold. To prevent unnecessarily large !> errors for block-structure embedded in general matrices, !> zero components are not perturbed. A zero !> entry is considered if all multiplications involved !> in computing that entry have at least one zero multiplicand. !>
Parameters
!> TRANS is INTEGER !> On entry, TRANS specifies the operation to be performed as !> follows: !> !> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y) !> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) !> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) !> !> Unchanged on exit. !>
M
!> M is INTEGER !> On entry, M specifies the number of rows of the matrix A. !> M must be at least zero. !> Unchanged on exit. !>
N
!> N is INTEGER !> On entry, N specifies the number of columns of the matrix A. !> N must be at least zero. !> Unchanged on exit. !>
KL
!> KL is INTEGER !> The number of subdiagonals within the band of A. KL >= 0. !>
KU
!> KU is INTEGER !> The number of superdiagonals within the band of A. KU >= 0. !>
ALPHA
!> ALPHA is REAL !> On entry, ALPHA specifies the scalar alpha. !> Unchanged on exit. !>
AB
!> AB is COMPLEX array, dimension (LDAB,n) !> Before entry, the leading m by n part of the array AB must !> contain the matrix of coefficients. !> Unchanged on exit. !>
LDAB
!> LDAB is INTEGER !> On entry, LDAB specifies the first dimension of AB as declared !> in the calling (sub) program. LDAB must be at least !> max( 1, m ). !> Unchanged on exit. !>
X
!> X is COMPLEX array, dimension !> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' !> and at least !> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. !> Before entry, the incremented array X must contain the !> vector x. !> Unchanged on exit. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !> Unchanged on exit. !>
BETA
!> BETA is REAL !> On entry, BETA specifies the scalar beta. When BETA is !> supplied as zero then Y need not be set on input. !> Unchanged on exit. !>
Y
!> Y is REAL array, dimension !> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' !> and at least !> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. !> Before entry with BETA non-zero, the incremented array Y !> must contain the vector y. On exit, Y is overwritten by the !> updated vector y. !> If either m or n is zero, then Y not referenced and the function !> performs a quick return. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !> Unchanged on exit. !> !> Level 2 Blas routine. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 186 of file cla_gbamv.f.
subroutine DLA_GBAMV (integer trans, integer m, integer n, integer kl, integer ku, double precision alpha, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) x, integer incx, double precision beta, double precision, dimension( * ) y, integer incy)¶
DLA_GBAMV performs a matrix-vector operation to calculate error bounds.
Purpose:
!> !> DLA_GBAMV performs one of the matrix-vector operations !> !> y := alpha*abs(A)*abs(x) + beta*abs(y), !> or y := alpha*abs(A)**T*abs(x) + beta*abs(y), !> !> where alpha and beta are scalars, x and y are vectors and A is an !> m by n matrix. !> !> This function is primarily used in calculating error bounds. !> To protect against underflow during evaluation, components in !> the resulting vector are perturbed away from zero by (N+1) !> times the underflow threshold. To prevent unnecessarily large !> errors for block-structure embedded in general matrices, !> zero components are not perturbed. A zero !> entry is considered if all multiplications involved !> in computing that entry have at least one zero multiplicand. !>
Parameters
!> TRANS is INTEGER !> On entry, TRANS specifies the operation to be performed as !> follows: !> !> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y) !> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) !> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) !> !> Unchanged on exit. !>
M
!> M is INTEGER !> On entry, M specifies the number of rows of the matrix A. !> M must be at least zero. !> Unchanged on exit. !>
N
!> N is INTEGER !> On entry, N specifies the number of columns of the matrix A. !> N must be at least zero. !> Unchanged on exit. !>
KL
!> KL is INTEGER !> The number of subdiagonals within the band of A. KL >= 0. !>
KU
!> KU is INTEGER !> The number of superdiagonals within the band of A. KU >= 0. !>
ALPHA
!> ALPHA is DOUBLE PRECISION !> On entry, ALPHA specifies the scalar alpha. !> Unchanged on exit. !>
AB
!> AB is DOUBLE PRECISION array, dimension ( LDAB, n ) !> Before entry, the leading m by n part of the array AB must !> contain the matrix of coefficients. !> Unchanged on exit. !>
LDAB
!> LDAB is INTEGER !> On entry, LDA specifies the first dimension of AB as declared !> in the calling (sub) program. LDAB must be at least !> max( 1, m ). !> Unchanged on exit. !>
X
!> X is DOUBLE PRECISION array, dimension !> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' !> and at least !> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. !> Before entry, the incremented array X must contain the !> vector x. !> Unchanged on exit. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !> Unchanged on exit. !>
BETA
!> BETA is DOUBLE PRECISION !> On entry, BETA specifies the scalar beta. When BETA is !> supplied as zero then Y need not be set on input. !> Unchanged on exit. !>
Y
!> Y is DOUBLE PRECISION array, dimension !> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' !> and at least !> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. !> Before entry with BETA non-zero, the incremented array Y !> must contain the vector y. On exit, Y is overwritten by the !> updated vector y. !> If either m or n is zero, then Y not referenced and the function !> performs a quick return. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !> Unchanged on exit. !> !> Level 2 Blas routine. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 185 of file dla_gbamv.f.
subroutine SLA_GBAMV (integer trans, integer m, integer n, integer kl, integer ku, real alpha, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) x, integer incx, real beta, real, dimension( * ) y, integer incy)¶
SLA_GBAMV performs a matrix-vector operation to calculate error bounds.
Purpose:
!> !> SLA_GBAMV performs one of the matrix-vector operations !> !> y := alpha*abs(A)*abs(x) + beta*abs(y), !> or y := alpha*abs(A)**T*abs(x) + beta*abs(y), !> !> where alpha and beta are scalars, x and y are vectors and A is an !> m by n matrix. !> !> This function is primarily used in calculating error bounds. !> To protect against underflow during evaluation, components in !> the resulting vector are perturbed away from zero by (N+1) !> times the underflow threshold. To prevent unnecessarily large !> errors for block-structure embedded in general matrices, !> zero components are not perturbed. A zero !> entry is considered if all multiplications involved !> in computing that entry have at least one zero multiplicand. !>
Parameters
!> TRANS is INTEGER !> On entry, TRANS specifies the operation to be performed as !> follows: !> !> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y) !> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) !> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) !> !> Unchanged on exit. !>
M
!> M is INTEGER !> On entry, M specifies the number of rows of the matrix A. !> M must be at least zero. !> Unchanged on exit. !>
N
!> N is INTEGER !> On entry, N specifies the number of columns of the matrix A. !> N must be at least zero. !> Unchanged on exit. !>
KL
!> KL is INTEGER !> The number of subdiagonals within the band of A. KL >= 0. !>
KU
!> KU is INTEGER !> The number of superdiagonals within the band of A. KU >= 0. !>
ALPHA
!> ALPHA is REAL !> On entry, ALPHA specifies the scalar alpha. !> Unchanged on exit. !>
AB
!> AB is REAL array, dimension ( LDAB, n ) !> Before entry, the leading m by n part of the array AB must !> contain the matrix of coefficients. !> Unchanged on exit. !>
LDAB
!> LDAB is INTEGER !> On entry, LDA specifies the first dimension of AB as declared !> in the calling (sub) program. LDAB must be at least !> max( 1, m ). !> Unchanged on exit. !>
X
!> X is REAL array, dimension !> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' !> and at least !> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. !> Before entry, the incremented array X must contain the !> vector x. !> Unchanged on exit. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !> Unchanged on exit. !>
BETA
!> BETA is REAL !> On entry, BETA specifies the scalar beta. When BETA is !> supplied as zero then Y need not be set on input. !> Unchanged on exit. !>
Y
!> Y is REAL array, dimension !> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' !> and at least !> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. !> Before entry with BETA non-zero, the incremented array Y !> must contain the vector y. On exit, Y is overwritten by the !> updated vector y. !> If either m or n is zero, then Y not referenced and the function !> performs a quick return. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !> Unchanged on exit. !> !> Level 2 Blas routine. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 185 of file sla_gbamv.f.
subroutine ZLA_GBAMV (integer trans, integer m, integer n, integer kl, integer ku, double precision alpha, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( * ) x, integer incx, double precision beta, double precision, dimension( * ) y, integer incy)¶
ZLA_GBAMV performs a matrix-vector operation to calculate error bounds.
Purpose:
!> !> ZLA_GBAMV performs one of the matrix-vector operations !> !> y := alpha*abs(A)*abs(x) + beta*abs(y), !> or y := alpha*abs(A)**T*abs(x) + beta*abs(y), !> !> where alpha and beta are scalars, x and y are vectors and A is an !> m by n matrix. !> !> This function is primarily used in calculating error bounds. !> To protect against underflow during evaluation, components in !> the resulting vector are perturbed away from zero by (N+1) !> times the underflow threshold. To prevent unnecessarily large !> errors for block-structure embedded in general matrices, !> zero components are not perturbed. A zero !> entry is considered if all multiplications involved !> in computing that entry have at least one zero multiplicand. !>
Parameters
!> TRANS is INTEGER !> On entry, TRANS specifies the operation to be performed as !> follows: !> !> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y) !> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) !> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) !> !> Unchanged on exit. !>
M
!> M is INTEGER !> On entry, M specifies the number of rows of the matrix A. !> M must be at least zero. !> Unchanged on exit. !>
N
!> N is INTEGER !> On entry, N specifies the number of columns of the matrix A. !> N must be at least zero. !> Unchanged on exit. !>
KL
!> KL is INTEGER !> The number of subdiagonals within the band of A. KL >= 0. !>
KU
!> KU is INTEGER !> The number of superdiagonals within the band of A. KU >= 0. !>
ALPHA
!> ALPHA is DOUBLE PRECISION !> On entry, ALPHA specifies the scalar alpha. !> Unchanged on exit. !>
AB
!> AB is COMPLEX*16 array, dimension ( LDAB, n ) !> Before entry, the leading m by n part of the array AB must !> contain the matrix of coefficients. !> Unchanged on exit. !>
LDAB
!> LDAB is INTEGER !> On entry, LDAB specifies the first dimension of AB as declared !> in the calling (sub) program. LDAB must be at least !> max( 1, m ). !> Unchanged on exit. !>
X
!> X is COMPLEX*16 array, dimension !> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' !> and at least !> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. !> Before entry, the incremented array X must contain the !> vector x. !> Unchanged on exit. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !> Unchanged on exit. !>
BETA
!> BETA is DOUBLE PRECISION !> On entry, BETA specifies the scalar beta. When BETA is !> supplied as zero then Y need not be set on input. !> Unchanged on exit. !>
Y
!> Y is DOUBLE PRECISION array, dimension !> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' !> and at least !> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. !> Before entry with BETA non-zero, the incremented array Y !> must contain the vector y. On exit, Y is overwritten by the !> updated vector y. !> If either m or n is zero, then Y not referenced and the function !> performs a quick return. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !> Unchanged on exit. !> !> Level 2 Blas routine. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 186 of file zla_gbamv.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |