table of contents
hpr(3) | Library Functions Manual | hpr(3) |
NAME¶
hpr - {hp,sp}r: Hermitian/symmetric rank-1 update
SYNOPSIS¶
Functions¶
subroutine CHPR (uplo, n, alpha, x, incx, ap)
CHPR subroutine DSPR (uplo, n, alpha, x, incx, ap)
DSPR subroutine SSPR (uplo, n, alpha, x, incx, ap)
SSPR subroutine ZHPR (uplo, n, alpha, x, incx, ap)
ZHPR subroutine CSPR (uplo, n, alpha, x, incx, ap)
CSPR performs the symmetrical rank-1 update of a complex symmetric
packed matrix. subroutine ZSPR (uplo, n, alpha, x, incx, ap)
ZSPR performs the symmetrical rank-1 update of a complex symmetric
packed matrix.
Detailed Description¶
Function Documentation¶
subroutine CHPR (character uplo, integer n, real alpha, complex, dimension(*) x, integer incx, complex, dimension(*) ap)¶
CHPR
Purpose:
!> !> CHPR performs the hermitian rank 1 operation !> !> A := alpha*x*x**H + A, !> !> where alpha is a real scalar, x is an n element vector and A is an !> n by n hermitian matrix, supplied in packed form. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the matrix A is supplied in the packed !> array AP as follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> supplied in AP. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> supplied in AP. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
ALPHA
!> ALPHA is REAL !> On entry, ALPHA specifies the scalar alpha. !>
X
!> X is COMPLEX array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the n !> element vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
AP
!> AP is COMPLEX array, dimension at least !> ( ( n*( n + 1 ) )/2 ). !> Before entry with UPLO = 'U' or 'u', the array AP must !> contain the upper triangular part of the hermitian matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) !> and a( 2, 2 ) respectively, and so on. On exit, the array !> AP is overwritten by the upper triangular part of the !> updated matrix. !> Before entry with UPLO = 'L' or 'l', the array AP must !> contain the lower triangular part of the hermitian matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) !> and a( 3, 1 ) respectively, and so on. On exit, the array !> AP is overwritten by the lower triangular part of the !> updated matrix. !> Note that the imaginary parts of the diagonal elements need !> not be set, they are assumed to be zero, and on exit they !> are set to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 129 of file chpr.f.
subroutine CSPR (character uplo, integer n, complex alpha, complex, dimension( * ) x, integer incx, complex, dimension( * ) ap)¶
CSPR performs the symmetrical rank-1 update of a complex symmetric packed matrix.
Purpose:
!> !> CSPR performs the symmetric rank 1 operation !> !> A := alpha*x*x**H + A, !> !> where alpha is a complex scalar, x is an n element vector and A is an !> n by n symmetric matrix, supplied in packed form. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the matrix A is supplied in the packed !> array AP as follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> supplied in AP. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> supplied in AP. !> !> Unchanged on exit. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !> Unchanged on exit. !>
ALPHA
!> ALPHA is COMPLEX !> On entry, ALPHA specifies the scalar alpha. !> Unchanged on exit. !>
X
!> X is COMPLEX array, dimension at least !> ( 1 + ( N - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the N- !> element vector x. !> Unchanged on exit. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !> Unchanged on exit. !>
AP
!> AP is COMPLEX array, dimension at least !> ( ( N*( N + 1 ) )/2 ). !> Before entry, with UPLO = 'U' or 'u', the array AP must !> contain the upper triangular part of the symmetric matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) !> and a( 2, 2 ) respectively, and so on. On exit, the array !> AP is overwritten by the upper triangular part of the !> updated matrix. !> Before entry, with UPLO = 'L' or 'l', the array AP must !> contain the lower triangular part of the symmetric matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) !> and a( 3, 1 ) respectively, and so on. On exit, the array !> AP is overwritten by the lower triangular part of the !> updated matrix. !> Note that the imaginary parts of the diagonal elements need !> not be set, they are assumed to be zero, and on exit they !> are set to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 131 of file cspr.f.
subroutine DSPR (character uplo, integer n, double precision alpha, double precision, dimension(*) x, integer incx, double precision, dimension(*) ap)¶
DSPR
Purpose:
!> !> DSPR performs the symmetric rank 1 operation !> !> A := alpha*x*x**T + A, !> !> where alpha is a real scalar, x is an n element vector and A is an !> n by n symmetric matrix, supplied in packed form. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the matrix A is supplied in the packed !> array AP as follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> supplied in AP. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> supplied in AP. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
ALPHA
!> ALPHA is DOUBLE PRECISION. !> On entry, ALPHA specifies the scalar alpha. !>
X
!> X is DOUBLE PRECISION array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the n !> element vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
AP
!> AP is DOUBLE PRECISION array, dimension at least !> ( ( n*( n + 1 ) )/2 ). !> Before entry with UPLO = 'U' or 'u', the array AP must !> contain the upper triangular part of the symmetric matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) !> and a( 2, 2 ) respectively, and so on. On exit, the array !> AP is overwritten by the upper triangular part of the !> updated matrix. !> Before entry with UPLO = 'L' or 'l', the array AP must !> contain the lower triangular part of the symmetric matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) !> and a( 3, 1 ) respectively, and so on. On exit, the array !> AP is overwritten by the lower triangular part of the !> updated matrix. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 126 of file dspr.f.
subroutine SSPR (character uplo, integer n, real alpha, real, dimension(*) x, integer incx, real, dimension(*) ap)¶
SSPR
Purpose:
!> !> SSPR performs the symmetric rank 1 operation !> !> A := alpha*x*x**T + A, !> !> where alpha is a real scalar, x is an n element vector and A is an !> n by n symmetric matrix, supplied in packed form. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the matrix A is supplied in the packed !> array AP as follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> supplied in AP. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> supplied in AP. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
ALPHA
!> ALPHA is REAL !> On entry, ALPHA specifies the scalar alpha. !>
X
!> X is REAL array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the n !> element vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
AP
!> AP is REAL array, dimension at least !> ( ( n*( n + 1 ) )/2 ). !> Before entry with UPLO = 'U' or 'u', the array AP must !> contain the upper triangular part of the symmetric matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) !> and a( 2, 2 ) respectively, and so on. On exit, the array !> AP is overwritten by the upper triangular part of the !> updated matrix. !> Before entry with UPLO = 'L' or 'l', the array AP must !> contain the lower triangular part of the symmetric matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) !> and a( 3, 1 ) respectively, and so on. On exit, the array !> AP is overwritten by the lower triangular part of the !> updated matrix. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 126 of file sspr.f.
subroutine ZHPR (character uplo, integer n, double precision alpha, complex*16, dimension(*) x, integer incx, complex*16, dimension(*) ap)¶
ZHPR
Purpose:
!> !> ZHPR performs the hermitian rank 1 operation !> !> A := alpha*x*x**H + A, !> !> where alpha is a real scalar, x is an n element vector and A is an !> n by n hermitian matrix, supplied in packed form. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the matrix A is supplied in the packed !> array AP as follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> supplied in AP. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> supplied in AP. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
ALPHA
!> ALPHA is DOUBLE PRECISION. !> On entry, ALPHA specifies the scalar alpha. !>
X
!> X is COMPLEX*16 array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the n !> element vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
AP
!> AP is COMPLEX*16 array, dimension at least !> ( ( n*( n + 1 ) )/2 ). !> Before entry with UPLO = 'U' or 'u', the array AP must !> contain the upper triangular part of the hermitian matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) !> and a( 2, 2 ) respectively, and so on. On exit, the array !> AP is overwritten by the upper triangular part of the !> updated matrix. !> Before entry with UPLO = 'L' or 'l', the array AP must !> contain the lower triangular part of the hermitian matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) !> and a( 3, 1 ) respectively, and so on. On exit, the array !> AP is overwritten by the lower triangular part of the !> updated matrix. !> Note that the imaginary parts of the diagonal elements need !> not be set, they are assumed to be zero, and on exit they !> are set to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 129 of file zhpr.f.
subroutine ZSPR (character uplo, integer n, complex*16 alpha, complex*16, dimension( * ) x, integer incx, complex*16, dimension( * ) ap)¶
ZSPR performs the symmetrical rank-1 update of a complex symmetric packed matrix.
Purpose:
!> !> ZSPR performs the symmetric rank 1 operation !> !> A := alpha*x*x**H + A, !> !> where alpha is a complex scalar, x is an n element vector and A is an !> n by n symmetric matrix, supplied in packed form. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the matrix A is supplied in the packed !> array AP as follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> supplied in AP. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> supplied in AP. !> !> Unchanged on exit. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !> Unchanged on exit. !>
ALPHA
!> ALPHA is COMPLEX*16 !> On entry, ALPHA specifies the scalar alpha. !> Unchanged on exit. !>
X
!> X is COMPLEX*16 array, dimension at least !> ( 1 + ( N - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the N- !> element vector x. !> Unchanged on exit. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !> Unchanged on exit. !>
AP
!> AP is COMPLEX*16 array, dimension at least !> ( ( N*( N + 1 ) )/2 ). !> Before entry, with UPLO = 'U' or 'u', the array AP must !> contain the upper triangular part of the symmetric matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) !> and a( 2, 2 ) respectively, and so on. On exit, the array !> AP is overwritten by the upper triangular part of the !> updated matrix. !> Before entry, with UPLO = 'L' or 'l', the array AP must !> contain the lower triangular part of the symmetric matrix !> packed sequentially, column by column, so that AP( 1 ) !> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) !> and a( 3, 1 ) respectively, and so on. On exit, the array !> AP is overwritten by the lower triangular part of the !> updated matrix. !> Note that the imaginary parts of the diagonal elements need !> not be set, they are assumed to be zero, and on exit they !> are set to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 131 of file zspr.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |