Scroll to navigation

herfs(3) Library Functions Manual herfs(3)

NAME

herfs - {he,sy}rfs: iterative refinement

SYNOPSIS

Functions


subroutine CHERFS (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CHERFS subroutine CSYRFS (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CSYRFS subroutine DSYRFS (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DSYRFS subroutine SSYRFS (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
SSYRFS subroutine ZHERFS (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZHERFS subroutine ZSYRFS (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZSYRFS

Detailed Description

Function Documentation

subroutine CHERFS (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)

CHERFS

Purpose:

!>
!> CHERFS improves the computed solution to a system of linear
!> equations when the coefficient matrix is Hermitian indefinite, and
!> provides error bounds and backward error estimates for the solution.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N
!>          upper triangular part of A contains the upper triangular part
!>          of the matrix A, and the strictly lower triangular part of A
!>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
!>          triangular part of A contains the lower triangular part of
!>          the matrix A, and the strictly upper triangular part of A is
!>          not referenced.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

AF

!>          AF is COMPLEX array, dimension (LDAF,N)
!>          The factored form of the matrix A.  AF contains the block
!>          diagonal matrix D and the multipliers used to obtain the
!>          factor U or L from the factorization A = U*D*U**H or
!>          A = L*D*L**H as computed by CHETRF.
!> 

LDAF

!>          LDAF is INTEGER
!>          The leading dimension of the array AF.  LDAF >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by CHETRF.
!> 

B

!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          The right hand side matrix B.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

X

!>          X is COMPLEX array, dimension (LDX,NRHS)
!>          On entry, the solution matrix X, as computed by CHETRS.
!>          On exit, the improved solution matrix X.
!> 

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 

FERR

!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 

BERR

!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 

WORK

!>          WORK is COMPLEX array, dimension (2*N)
!> 

RWORK

!>          RWORK is REAL array, dimension (N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Internal Parameters:

!>  ITMAX is the maximum number of steps of iterative refinement.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 190 of file cherfs.f.

subroutine CSYRFS (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)

CSYRFS

Purpose:

!>
!> CSYRFS improves the computed solution to a system of linear
!> equations when the coefficient matrix is symmetric indefinite, and
!> provides error bounds and backward error estimates for the solution.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
!>          upper triangular part of A contains the upper triangular part
!>          of the matrix A, and the strictly lower triangular part of A
!>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
!>          triangular part of A contains the lower triangular part of
!>          the matrix A, and the strictly upper triangular part of A is
!>          not referenced.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

AF

!>          AF is COMPLEX array, dimension (LDAF,N)
!>          The factored form of the matrix A.  AF contains the block
!>          diagonal matrix D and the multipliers used to obtain the
!>          factor U or L from the factorization A = U*D*U**T or
!>          A = L*D*L**T as computed by CSYTRF.
!> 

LDAF

!>          LDAF is INTEGER
!>          The leading dimension of the array AF.  LDAF >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by CSYTRF.
!> 

B

!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          The right hand side matrix B.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

X

!>          X is COMPLEX array, dimension (LDX,NRHS)
!>          On entry, the solution matrix X, as computed by CSYTRS.
!>          On exit, the improved solution matrix X.
!> 

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 

FERR

!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 

BERR

!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 

WORK

!>          WORK is COMPLEX array, dimension (2*N)
!> 

RWORK

!>          RWORK is REAL array, dimension (N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Internal Parameters:

!>  ITMAX is the maximum number of steps of iterative refinement.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 190 of file csyrfs.f.

subroutine DSYRFS (character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)

DSYRFS

Purpose:

!>
!> DSYRFS improves the computed solution to a system of linear
!> equations when the coefficient matrix is symmetric indefinite, and
!> provides error bounds and backward error estimates for the solution.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
!>          upper triangular part of A contains the upper triangular part
!>          of the matrix A, and the strictly lower triangular part of A
!>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
!>          triangular part of A contains the lower triangular part of
!>          the matrix A, and the strictly upper triangular part of A is
!>          not referenced.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

AF

!>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
!>          The factored form of the matrix A.  AF contains the block
!>          diagonal matrix D and the multipliers used to obtain the
!>          factor U or L from the factorization A = U*D*U**T or
!>          A = L*D*L**T as computed by DSYTRF.
!> 

LDAF

!>          LDAF is INTEGER
!>          The leading dimension of the array AF.  LDAF >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by DSYTRF.
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>          The right hand side matrix B.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

X

!>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
!>          On entry, the solution matrix X, as computed by DSYTRS.
!>          On exit, the improved solution matrix X.
!> 

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 

FERR

!>          FERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 

BERR

!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (3*N)
!> 

IWORK

!>          IWORK is INTEGER array, dimension (N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Internal Parameters:

!>  ITMAX is the maximum number of steps of iterative refinement.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 189 of file dsyrfs.f.

subroutine SSYRFS (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)

SSYRFS

Purpose:

!>
!> SSYRFS improves the computed solution to a system of linear
!> equations when the coefficient matrix is symmetric indefinite, and
!> provides error bounds and backward error estimates for the solution.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
!>          upper triangular part of A contains the upper triangular part
!>          of the matrix A, and the strictly lower triangular part of A
!>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
!>          triangular part of A contains the lower triangular part of
!>          the matrix A, and the strictly upper triangular part of A is
!>          not referenced.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

AF

!>          AF is REAL array, dimension (LDAF,N)
!>          The factored form of the matrix A.  AF contains the block
!>          diagonal matrix D and the multipliers used to obtain the
!>          factor U or L from the factorization A = U*D*U**T or
!>          A = L*D*L**T as computed by SSYTRF.
!> 

LDAF

!>          LDAF is INTEGER
!>          The leading dimension of the array AF.  LDAF >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by SSYTRF.
!> 

B

!>          B is REAL array, dimension (LDB,NRHS)
!>          The right hand side matrix B.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

X

!>          X is REAL array, dimension (LDX,NRHS)
!>          On entry, the solution matrix X, as computed by SSYTRS.
!>          On exit, the improved solution matrix X.
!> 

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 

FERR

!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 

BERR

!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 

WORK

!>          WORK is REAL array, dimension (3*N)
!> 

IWORK

!>          IWORK is INTEGER array, dimension (N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Internal Parameters:

!>  ITMAX is the maximum number of steps of iterative refinement.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 189 of file ssyrfs.f.

subroutine ZHERFS (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)

ZHERFS

Purpose:

!>
!> ZHERFS improves the computed solution to a system of linear
!> equations when the coefficient matrix is Hermitian indefinite, and
!> provides error bounds and backward error estimates for the solution.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N
!>          upper triangular part of A contains the upper triangular part
!>          of the matrix A, and the strictly lower triangular part of A
!>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
!>          triangular part of A contains the lower triangular part of
!>          the matrix A, and the strictly upper triangular part of A is
!>          not referenced.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

AF

!>          AF is COMPLEX*16 array, dimension (LDAF,N)
!>          The factored form of the matrix A.  AF contains the block
!>          diagonal matrix D and the multipliers used to obtain the
!>          factor U or L from the factorization A = U*D*U**H or
!>          A = L*D*L**H as computed by ZHETRF.
!> 

LDAF

!>          LDAF is INTEGER
!>          The leading dimension of the array AF.  LDAF >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by ZHETRF.
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          The right hand side matrix B.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

X

!>          X is COMPLEX*16 array, dimension (LDX,NRHS)
!>          On entry, the solution matrix X, as computed by ZHETRS.
!>          On exit, the improved solution matrix X.
!> 

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 

FERR

!>          FERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 

BERR

!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (2*N)
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array, dimension (N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Internal Parameters:

!>  ITMAX is the maximum number of steps of iterative refinement.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 190 of file zherfs.f.

subroutine ZSYRFS (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)

ZSYRFS

Purpose:

!>
!> ZSYRFS improves the computed solution to a system of linear
!> equations when the coefficient matrix is symmetric indefinite, and
!> provides error bounds and backward error estimates for the solution.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
!>          upper triangular part of A contains the upper triangular part
!>          of the matrix A, and the strictly lower triangular part of A
!>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
!>          triangular part of A contains the lower triangular part of
!>          the matrix A, and the strictly upper triangular part of A is
!>          not referenced.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

AF

!>          AF is COMPLEX*16 array, dimension (LDAF,N)
!>          The factored form of the matrix A.  AF contains the block
!>          diagonal matrix D and the multipliers used to obtain the
!>          factor U or L from the factorization A = U*D*U**T or
!>          A = L*D*L**T as computed by ZSYTRF.
!> 

LDAF

!>          LDAF is INTEGER
!>          The leading dimension of the array AF.  LDAF >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by ZSYTRF.
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          The right hand side matrix B.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

X

!>          X is COMPLEX*16 array, dimension (LDX,NRHS)
!>          On entry, the solution matrix X, as computed by ZSYTRS.
!>          On exit, the improved solution matrix X.
!> 

LDX

!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 

FERR

!>          FERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 

BERR

!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (2*N)
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array, dimension (N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Internal Parameters:

!>  ITMAX is the maximum number of steps of iterative refinement.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 190 of file zsyrfs.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK