table of contents
hemv(3) | Library Functions Manual | hemv(3) |
NAME¶
hemv - {he,sy}mv: Hermitian/symmetric matrix-vector multiply ([cz]symv in LAPACK)
SYNOPSIS¶
Functions¶
subroutine CHEMV (uplo, n, alpha, a, lda, x, incx, beta, y,
incy)
CHEMV subroutine DSYMV (uplo, n, alpha, a, lda, x, incx, beta,
y, incy)
DSYMV subroutine SSYMV (uplo, n, alpha, a, lda, x, incx, beta,
y, incy)
SSYMV subroutine ZHEMV (uplo, n, alpha, a, lda, x, incx, beta,
y, incy)
ZHEMV subroutine CSYMV (uplo, n, alpha, a, lda, x, incx, beta,
y, incy)
CSYMV computes a matrix-vector product for a complex symmetric matrix.
subroutine ZSYMV (uplo, n, alpha, a, lda, x, incx, beta, y, incy)
ZSYMV computes a matrix-vector product for a complex symmetric matrix.
Detailed Description¶
Function Documentation¶
subroutine CHEMV (character uplo, integer n, complex alpha, complex, dimension(lda,*) a, integer lda, complex, dimension(*) x, integer incx, complex beta, complex, dimension(*) y, integer incy)¶
CHEMV
Purpose:
!> !> CHEMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n hermitian matrix. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
ALPHA
!> ALPHA is COMPLEX !> On entry, ALPHA specifies the scalar alpha. !>
A
!> A is COMPLEX array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the hermitian matrix and the strictly !> lower triangular part of A is not referenced. !> Before entry with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the hermitian matrix and the strictly !> upper triangular part of A is not referenced. !> Note that the imaginary parts of the diagonal elements need !> not be set and are assumed to be zero. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> max( 1, n ). !>
X
!> X is COMPLEX array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the n !> element vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
BETA
!> BETA is COMPLEX !> On entry, BETA specifies the scalar beta. When BETA is !> supplied as zero then Y need not be set on input. !>
Y
!> Y is COMPLEX array, dimension at least !> ( 1 + ( n - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the n !> element vector y. On exit, Y is overwritten by the updated !> vector y. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> The vector and matrix arguments are not referenced when N = 0, or M = 0 !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 153 of file chemv.f.
subroutine CSYMV (character uplo, integer n, complex alpha, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) x, integer incx, complex beta, complex, dimension( * ) y, integer incy)¶
CSYMV computes a matrix-vector product for a complex symmetric matrix.
Purpose:
!> !> CSYMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n symmetric matrix. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced. !> !> Unchanged on exit. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !> Unchanged on exit. !>
ALPHA
!> ALPHA is COMPLEX !> On entry, ALPHA specifies the scalar alpha. !> Unchanged on exit. !>
A
!> A is COMPLEX array, dimension ( LDA, N ) !> Before entry, with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the symmetric matrix and the strictly !> lower triangular part of A is not referenced. !> Before entry, with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the symmetric matrix and the strictly !> upper triangular part of A is not referenced. !> Unchanged on exit. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> max( 1, N ). !> Unchanged on exit. !>
X
!> X is COMPLEX array, dimension at least !> ( 1 + ( N - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the N- !> element vector x. !> Unchanged on exit. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !> Unchanged on exit. !>
BETA
!> BETA is COMPLEX !> On entry, BETA specifies the scalar beta. When BETA is !> supplied as zero then Y need not be set on input. !> Unchanged on exit. !>
Y
!> Y is COMPLEX array, dimension at least !> ( 1 + ( N - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the n !> element vector y. On exit, Y is overwritten by the updated !> vector y. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !> Unchanged on exit. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 156 of file csymv.f.
subroutine DSYMV (character uplo, integer n, double precision alpha, double precision, dimension(lda,*) a, integer lda, double precision, dimension(*) x, integer incx, double precision beta, double precision, dimension(*) y, integer incy)¶
DSYMV
Purpose:
!> !> DSYMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n symmetric matrix. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
ALPHA
!> ALPHA is DOUBLE PRECISION. !> On entry, ALPHA specifies the scalar alpha. !>
A
!> A is DOUBLE PRECISION array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the symmetric matrix and the strictly !> lower triangular part of A is not referenced. !> Before entry with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the symmetric matrix and the strictly !> upper triangular part of A is not referenced. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> max( 1, n ). !>
X
!> X is DOUBLE PRECISION array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the n !> element vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
BETA
!> BETA is DOUBLE PRECISION. !> On entry, BETA specifies the scalar beta. When BETA is !> supplied as zero then Y need not be set on input. !>
Y
!> Y is DOUBLE PRECISION array, dimension at least !> ( 1 + ( n - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the n !> element vector y. On exit, Y is overwritten by the updated !> vector y. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> The vector and matrix arguments are not referenced when N = 0, or M = 0 !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 151 of file dsymv.f.
subroutine SSYMV (character uplo, integer n, real alpha, real, dimension(lda,*) a, integer lda, real, dimension(*) x, integer incx, real beta, real, dimension(*) y, integer incy)¶
SSYMV
Purpose:
!> !> SSYMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n symmetric matrix. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
ALPHA
!> ALPHA is REAL !> On entry, ALPHA specifies the scalar alpha. !>
A
!> A is REAL array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the symmetric matrix and the strictly !> lower triangular part of A is not referenced. !> Before entry with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the symmetric matrix and the strictly !> upper triangular part of A is not referenced. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> max( 1, n ). !>
X
!> X is REAL array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the n !> element vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
BETA
!> BETA is REAL !> On entry, BETA specifies the scalar beta. When BETA is !> supplied as zero then Y need not be set on input. !>
Y
!> Y is REAL array, dimension at least !> ( 1 + ( n - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the n !> element vector y. On exit, Y is overwritten by the updated !> vector y. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> The vector and matrix arguments are not referenced when N = 0, or M = 0 !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 151 of file ssymv.f.
subroutine ZHEMV (character uplo, integer n, complex*16 alpha, complex*16, dimension(lda,*) a, integer lda, complex*16, dimension(*) x, integer incx, complex*16 beta, complex*16, dimension(*) y, integer incy)¶
ZHEMV
Purpose:
!> !> ZHEMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n hermitian matrix. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
ALPHA
!> ALPHA is COMPLEX*16 !> On entry, ALPHA specifies the scalar alpha. !>
A
!> A is COMPLEX*16 array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the hermitian matrix and the strictly !> lower triangular part of A is not referenced. !> Before entry with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the hermitian matrix and the strictly !> upper triangular part of A is not referenced. !> Note that the imaginary parts of the diagonal elements need !> not be set and are assumed to be zero. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> max( 1, n ). !>
X
!> X is COMPLEX*16 array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the n !> element vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
BETA
!> BETA is COMPLEX*16 !> On entry, BETA specifies the scalar beta. When BETA is !> supplied as zero then Y need not be set on input. !>
Y
!> Y is COMPLEX*16 array, dimension at least !> ( 1 + ( n - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the n !> element vector y. On exit, Y is overwritten by the updated !> vector y. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> The vector and matrix arguments are not referenced when N = 0, or M = 0 !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 153 of file zhemv.f.
subroutine ZSYMV (character uplo, integer n, complex*16 alpha, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) x, integer incx, complex*16 beta, complex*16, dimension( * ) y, integer incy)¶
ZSYMV computes a matrix-vector product for a complex symmetric matrix.
Purpose:
!> !> ZSYMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n symmetric matrix. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array A is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of A !> is to be referenced. !> !> UPLO = 'L' or 'l' Only the lower triangular part of A !> is to be referenced. !> !> Unchanged on exit. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !> Unchanged on exit. !>
ALPHA
!> ALPHA is COMPLEX*16 !> On entry, ALPHA specifies the scalar alpha. !> Unchanged on exit. !>
A
!> A is COMPLEX*16 array, dimension ( LDA, N ) !> Before entry, with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array A must contain the upper !> triangular part of the symmetric matrix and the strictly !> lower triangular part of A is not referenced. !> Before entry, with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array A must contain the lower !> triangular part of the symmetric matrix and the strictly !> upper triangular part of A is not referenced. !> Unchanged on exit. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> max( 1, N ). !> Unchanged on exit. !>
X
!> X is COMPLEX*16 array, dimension at least !> ( 1 + ( N - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the N- !> element vector x. !> Unchanged on exit. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !> Unchanged on exit. !>
BETA
!> BETA is COMPLEX*16 !> On entry, BETA specifies the scalar beta. When BETA is !> supplied as zero then Y need not be set on input. !> Unchanged on exit. !>
Y
!> Y is COMPLEX*16 array, dimension at least !> ( 1 + ( N - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the n !> element vector y. On exit, Y is overwritten by the updated !> vector y. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !> Unchanged on exit. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 156 of file zsymv.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |