table of contents
hbmv(3) | Library Functions Manual | hbmv(3) |
NAME¶
hbmv - {hb,sb}mv: Hermitian/symmetric matrix-vector multiply
SYNOPSIS¶
Functions¶
subroutine CHBMV (uplo, n, k, alpha, a, lda, x, incx, beta,
y, incy)
CHBMV subroutine DSBMV (uplo, n, k, alpha, a, lda, x, incx,
beta, y, incy)
DSBMV subroutine SSBMV (uplo, n, k, alpha, a, lda, x, incx,
beta, y, incy)
SSBMV subroutine ZHBMV (uplo, n, k, alpha, a, lda, x, incx,
beta, y, incy)
ZHBMV
Detailed Description¶
Function Documentation¶
subroutine CHBMV (character uplo, integer n, integer k, complex alpha, complex, dimension(lda,*) a, integer lda, complex, dimension(*) x, integer incx, complex beta, complex, dimension(*) y, integer incy)¶
CHBMV
Purpose:
!> !> CHBMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n hermitian band matrix, with k super-diagonals. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the band matrix A is being supplied as !> follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> being supplied. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> being supplied. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
K
!> K is INTEGER !> On entry, K specifies the number of super-diagonals of the !> matrix A. K must satisfy 0 .le. K. !>
ALPHA
!> ALPHA is COMPLEX !> On entry, ALPHA specifies the scalar alpha. !>
A
!> A is COMPLEX array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) !> by n part of the array A must contain the upper triangular !> band part of the hermitian matrix, supplied column by !> column, with the leading diagonal of the matrix in row !> ( k + 1 ) of the array, the first super-diagonal starting at !> position 2 in row k, and so on. The top left k by k triangle !> of the array A is not referenced. !> The following program segment will transfer the upper !> triangular part of a hermitian band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = K + 1 - J !> DO 10, I = MAX( 1, J - K ), J !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !> !> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) !> by n part of the array A must contain the lower triangular !> band part of the hermitian matrix, supplied column by !> column, with the leading diagonal of the matrix in row 1 of !> the array, the first sub-diagonal starting at position 1 in !> row 2, and so on. The bottom right k by k triangle of the !> array A is not referenced. !> The following program segment will transfer the lower !> triangular part of a hermitian band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = 1 - J !> DO 10, I = J, MIN( N, J + K ) !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !> !> Note that the imaginary parts of the diagonal elements need !> not be set and are assumed to be zero. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> ( k + 1 ). !>
X
!> X is COMPLEX array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the !> vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
BETA
!> BETA is COMPLEX !> On entry, BETA specifies the scalar beta. !>
Y
!> Y is COMPLEX array, dimension at least !> ( 1 + ( n - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the !> vector y. On exit, Y is overwritten by the updated vector y. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> The vector and matrix arguments are not referenced when N = 0, or M = 0 !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 186 of file chbmv.f.
subroutine DSBMV (character uplo, integer n, integer k, double precision alpha, double precision, dimension(lda,*) a, integer lda, double precision, dimension(*) x, integer incx, double precision beta, double precision, dimension(*) y, integer incy)¶
DSBMV
Purpose:
!> !> DSBMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n symmetric band matrix, with k super-diagonals. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the band matrix A is being supplied as !> follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> being supplied. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> being supplied. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
K
!> K is INTEGER !> On entry, K specifies the number of super-diagonals of the !> matrix A. K must satisfy 0 .le. K. !>
ALPHA
!> ALPHA is DOUBLE PRECISION. !> On entry, ALPHA specifies the scalar alpha. !>
A
!> A is DOUBLE PRECISION array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) !> by n part of the array A must contain the upper triangular !> band part of the symmetric matrix, supplied column by !> column, with the leading diagonal of the matrix in row !> ( k + 1 ) of the array, the first super-diagonal starting at !> position 2 in row k, and so on. The top left k by k triangle !> of the array A is not referenced. !> The following program segment will transfer the upper !> triangular part of a symmetric band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = K + 1 - J !> DO 10, I = MAX( 1, J - K ), J !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !> !> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) !> by n part of the array A must contain the lower triangular !> band part of the symmetric matrix, supplied column by !> column, with the leading diagonal of the matrix in row 1 of !> the array, the first sub-diagonal starting at position 1 in !> row 2, and so on. The bottom right k by k triangle of the !> array A is not referenced. !> The following program segment will transfer the lower !> triangular part of a symmetric band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = 1 - J !> DO 10, I = J, MIN( N, J + K ) !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> ( k + 1 ). !>
X
!> X is DOUBLE PRECISION array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the !> vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
BETA
!> BETA is DOUBLE PRECISION. !> On entry, BETA specifies the scalar beta. !>
Y
!> Y is DOUBLE PRECISION array, dimension at least !> ( 1 + ( n - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the !> vector y. On exit, Y is overwritten by the updated vector y. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> The vector and matrix arguments are not referenced when N = 0, or M = 0 !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 183 of file dsbmv.f.
subroutine SSBMV (character uplo, integer n, integer k, real alpha, real, dimension(lda,*) a, integer lda, real, dimension(*) x, integer incx, real beta, real, dimension(*) y, integer incy)¶
SSBMV
Purpose:
!> !> SSBMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n symmetric band matrix, with k super-diagonals. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the band matrix A is being supplied as !> follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> being supplied. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> being supplied. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
K
!> K is INTEGER !> On entry, K specifies the number of super-diagonals of the !> matrix A. K must satisfy 0 .le. K. !>
ALPHA
!> ALPHA is REAL !> On entry, ALPHA specifies the scalar alpha. !>
A
!> A is REAL array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) !> by n part of the array A must contain the upper triangular !> band part of the symmetric matrix, supplied column by !> column, with the leading diagonal of the matrix in row !> ( k + 1 ) of the array, the first super-diagonal starting at !> position 2 in row k, and so on. The top left k by k triangle !> of the array A is not referenced. !> The following program segment will transfer the upper !> triangular part of a symmetric band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = K + 1 - J !> DO 10, I = MAX( 1, J - K ), J !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !> !> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) !> by n part of the array A must contain the lower triangular !> band part of the symmetric matrix, supplied column by !> column, with the leading diagonal of the matrix in row 1 of !> the array, the first sub-diagonal starting at position 1 in !> row 2, and so on. The bottom right k by k triangle of the !> array A is not referenced. !> The following program segment will transfer the lower !> triangular part of a symmetric band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = 1 - J !> DO 10, I = J, MIN( N, J + K ) !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> ( k + 1 ). !>
X
!> X is REAL array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the !> vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
BETA
!> BETA is REAL !> On entry, BETA specifies the scalar beta. !>
Y
!> Y is REAL array, dimension at least !> ( 1 + ( n - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the !> vector y. On exit, Y is overwritten by the updated vector y. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> The vector and matrix arguments are not referenced when N = 0, or M = 0 !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 183 of file ssbmv.f.
subroutine ZHBMV (character uplo, integer n, integer k, complex*16 alpha, complex*16, dimension(lda,*) a, integer lda, complex*16, dimension(*) x, integer incx, complex*16 beta, complex*16, dimension(*) y, integer incy)¶
ZHBMV
Purpose:
!> !> ZHBMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n hermitian band matrix, with k super-diagonals. !>
Parameters
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the band matrix A is being supplied as !> follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> being supplied. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> being supplied. !>
N
!> N is INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !>
K
!> K is INTEGER !> On entry, K specifies the number of super-diagonals of the !> matrix A. K must satisfy 0 .le. K. !>
ALPHA
!> ALPHA is COMPLEX*16 !> On entry, ALPHA specifies the scalar alpha. !>
A
!> A is COMPLEX*16 array, dimension ( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) !> by n part of the array A must contain the upper triangular !> band part of the hermitian matrix, supplied column by !> column, with the leading diagonal of the matrix in row !> ( k + 1 ) of the array, the first super-diagonal starting at !> position 2 in row k, and so on. The top left k by k triangle !> of the array A is not referenced. !> The following program segment will transfer the upper !> triangular part of a hermitian band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = K + 1 - J !> DO 10, I = MAX( 1, J - K ), J !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !> !> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) !> by n part of the array A must contain the lower triangular !> band part of the hermitian matrix, supplied column by !> column, with the leading diagonal of the matrix in row 1 of !> the array, the first sub-diagonal starting at position 1 in !> row 2, and so on. The bottom right k by k triangle of the !> array A is not referenced. !> The following program segment will transfer the lower !> triangular part of a hermitian band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = 1 - J !> DO 10, I = J, MIN( N, J + K ) !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !> !> Note that the imaginary parts of the diagonal elements need !> not be set and are assumed to be zero. !>
LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> ( k + 1 ). !>
X
!> X is COMPLEX*16 array, dimension at least !> ( 1 + ( n - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the !> vector x. !>
INCX
!> INCX is INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !>
BETA
!> BETA is COMPLEX*16 !> On entry, BETA specifies the scalar beta. !>
Y
!> Y is COMPLEX*16 array, dimension at least !> ( 1 + ( n - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the !> vector y. On exit, Y is overwritten by the updated vector y. !>
INCY
!> INCY is INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 2 Blas routine. !> The vector and matrix arguments are not referenced when N = 0, or M = 0 !> !> -- Written on 22-October-1986. !> Jack Dongarra, Argonne National Lab. !> Jeremy Du Croz, Nag Central Office. !> Sven Hammarling, Nag Central Office. !> Richard Hanson, Sandia National Labs. !>
Definition at line 186 of file zhbmv.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |