table of contents
hbgvd(3) | Library Functions Manual | hbgvd(3) |
NAME¶
hbgvd - {hb,sb}gvd: eig, divide and conquer
SYNOPSIS¶
Functions¶
subroutine CHBGVD (jobz, uplo, n, ka, kb, ab, ldab, bb,
ldbb, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
CHBGVD subroutine DSBGVD (jobz, uplo, n, ka, kb, ab, ldab, bb,
ldbb, w, z, ldz, work, lwork, iwork, liwork, info)
DSBGVD subroutine SSBGVD (jobz, uplo, n, ka, kb, ab, ldab, bb,
ldbb, w, z, ldz, work, lwork, iwork, liwork, info)
SSBGVD subroutine ZHBGVD (jobz, uplo, n, ka, kb, ab, ldab, bb,
ldbb, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHBGVD
Detailed Description¶
Function Documentation¶
subroutine CHBGVD (character jobz, character uplo, integer n, integer ka, integer kb, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldbb, * ) bb, integer ldbb, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)¶
CHBGVD
Purpose:
!> !> CHBGVD computes all the eigenvalues, and optionally, the eigenvectors !> of a complex generalized Hermitian-definite banded eigenproblem, of !> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian !> and banded, and B is also positive definite. If eigenvectors are !> desired, it uses a divide and conquer algorithm. !> !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangles of A and B are stored; !> = 'L': Lower triangles of A and B are stored. !>
N
!> N is INTEGER !> The order of the matrices A and B. N >= 0. !>
KA
!> KA is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KA >= 0. !>
KB
!> KB is INTEGER !> The number of superdiagonals of the matrix B if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KB >= 0. !>
AB
!> AB is COMPLEX array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first ka+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). !> !> On exit, the contents of AB are destroyed. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KA+1. !>
BB
!> BB is COMPLEX array, dimension (LDBB, N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix B, stored in the first kb+1 rows of the array. The !> j-th column of B is stored in the j-th column of the array BB !> as follows: !> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; !> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). !> !> On exit, the factor S from the split Cholesky factorization !> B = S**H*S, as returned by CPBSTF. !>
LDBB
!> LDBB is INTEGER !> The leading dimension of the array BB. LDBB >= KB+1. !>
W
!> W is REAL array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is COMPLEX array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of !> eigenvectors, with the i-th column of Z holding the !> eigenvector associated with W(i). The eigenvectors are !> normalized so that Z**H*B*Z = I. !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= N. !>
WORK
!> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO=0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If N <= 1, LWORK >= 1. !> If JOBZ = 'N' and N > 1, LWORK >= N. !> If JOBZ = 'V' and N > 1, LWORK >= 2*N**2. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
RWORK
!> RWORK is REAL array, dimension (MAX(1,LRWORK)) !> On exit, if INFO=0, RWORK(1) returns the optimal LRWORK. !>
LRWORK
!> LRWORK is INTEGER !> The dimension of array RWORK. !> If N <= 1, LRWORK >= 1. !> If JOBZ = 'N' and N > 1, LRWORK >= N. !> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. !> !> If LRWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO=0, IWORK(1) returns the optimal LIWORK. !>
LIWORK
!> LIWORK is INTEGER !> The dimension of array IWORK. !> If JOBZ = 'N' or N <= 1, LIWORK >= 1. !> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, and i is: !> <= N: the algorithm failed to converge: !> i off-diagonal elements of an intermediate !> tridiagonal form did not converge to zero; !> > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF !> returned INFO = i: B is not positive definite. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 243 of file chbgvd.f.
subroutine DSBGVD (character jobz, character uplo, integer n, integer ka, integer kb, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldbb, * ) bb, integer ldbb, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)¶
DSBGVD
Purpose:
!> !> DSBGVD computes all the eigenvalues, and optionally, the eigenvectors !> of a real generalized symmetric-definite banded eigenproblem, of the !> form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and !> banded, and B is also positive definite. If eigenvectors are !> desired, it uses a divide and conquer algorithm. !> !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangles of A and B are stored; !> = 'L': Lower triangles of A and B are stored. !>
N
!> N is INTEGER !> The order of the matrices A and B. N >= 0. !>
KA
!> KA is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KA >= 0. !>
KB
!> KB is INTEGER !> The number of superdiagonals of the matrix B if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KB >= 0. !>
AB
!> AB is DOUBLE PRECISION array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix A, stored in the first ka+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). !> !> On exit, the contents of AB are destroyed. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KA+1. !>
BB
!> BB is DOUBLE PRECISION array, dimension (LDBB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix B, stored in the first kb+1 rows of the array. The !> j-th column of B is stored in the j-th column of the array BB !> as follows: !> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; !> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). !> !> On exit, the factor S from the split Cholesky factorization !> B = S**T*S, as returned by DPBSTF. !>
LDBB
!> LDBB is INTEGER !> The leading dimension of the array BB. LDBB >= KB+1. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is DOUBLE PRECISION array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of !> eigenvectors, with the i-th column of Z holding the !> eigenvector associated with W(i). The eigenvectors are !> normalized so Z**T*B*Z = I. !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If N <= 1, LWORK >= 1. !> If JOBZ = 'N' and N > 1, LWORK >= 2*N. !> If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK and IWORK !> arrays, returns these values as the first entries of the WORK !> and IWORK arrays, and no error message related to LWORK or !> LIWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK. !>
LIWORK
!> LIWORK is INTEGER !> The dimension of the array IWORK. !> If JOBZ = 'N' or N <= 1, LIWORK >= 1. !> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK and !> IWORK arrays, returns these values as the first entries of !> the WORK and IWORK arrays, and no error message related to !> LWORK or LIWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, and i is: !> <= N: the algorithm failed to converge: !> i off-diagonal elements of an intermediate !> tridiagonal form did not converge to zero; !> > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF !> returned INFO = i: B is not positive definite. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 219 of file dsbgvd.f.
subroutine SSBGVD (character jobz, character uplo, integer n, integer ka, integer kb, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldbb, * ) bb, integer ldbb, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)¶
SSBGVD
Purpose:
!> !> SSBGVD computes all the eigenvalues, and optionally, the eigenvectors !> of a real generalized symmetric-definite banded eigenproblem, of the !> form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and !> banded, and B is also positive definite. If eigenvectors are !> desired, it uses a divide and conquer algorithm. !> !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangles of A and B are stored; !> = 'L': Lower triangles of A and B are stored. !>
N
!> N is INTEGER !> The order of the matrices A and B. N >= 0. !>
KA
!> KA is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KA >= 0. !>
KB
!> KB is INTEGER !> The number of superdiagonals of the matrix B if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KB >= 0. !>
AB
!> AB is REAL array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix A, stored in the first ka+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). !> !> On exit, the contents of AB are destroyed. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KA+1. !>
BB
!> BB is REAL array, dimension (LDBB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix B, stored in the first kb+1 rows of the array. The !> j-th column of B is stored in the j-th column of the array BB !> as follows: !> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; !> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). !> !> On exit, the factor S from the split Cholesky factorization !> B = S**T*S, as returned by SPBSTF. !>
LDBB
!> LDBB is INTEGER !> The leading dimension of the array BB. LDBB >= KB+1. !>
W
!> W is REAL array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is REAL array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of !> eigenvectors, with the i-th column of Z holding the !> eigenvector associated with W(i). The eigenvectors are !> normalized so Z**T*B*Z = I. !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If N <= 1, LWORK >= 1. !> If JOBZ = 'N' and N > 1, LWORK >= 3*N. !> If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK and IWORK !> arrays, returns these values as the first entries of the WORK !> and IWORK arrays, and no error message related to LWORK or !> LIWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK. !>
LIWORK
!> LIWORK is INTEGER !> The dimension of the array IWORK. !> If JOBZ = 'N' or N <= 1, LIWORK >= 1. !> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK and !> IWORK arrays, returns these values as the first entries of !> the WORK and IWORK arrays, and no error message related to !> LWORK or LIWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, and i is: !> <= N: the algorithm failed to converge: !> i off-diagonal elements of an intermediate !> tridiagonal form did not converge to zero; !> > N: if INFO = N + i, for 1 <= i <= N, then SPBSTF !> returned INFO = i: B is not positive definite. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 219 of file ssbgvd.f.
subroutine ZHBGVD (character jobz, character uplo, integer n, integer ka, integer kb, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldbb, * ) bb, integer ldbb, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)¶
ZHBGVD
Purpose:
!> !> ZHBGVD computes all the eigenvalues, and optionally, the eigenvectors !> of a complex generalized Hermitian-definite banded eigenproblem, of !> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian !> and banded, and B is also positive definite. If eigenvectors are !> desired, it uses a divide and conquer algorithm. !> !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangles of A and B are stored; !> = 'L': Lower triangles of A and B are stored. !>
N
!> N is INTEGER !> The order of the matrices A and B. N >= 0. !>
KA
!> KA is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KA >= 0. !>
KB
!> KB is INTEGER !> The number of superdiagonals of the matrix B if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KB >= 0. !>
AB
!> AB is COMPLEX*16 array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first ka+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). !> !> On exit, the contents of AB are destroyed. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KA+1. !>
BB
!> BB is COMPLEX*16 array, dimension (LDBB, N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix B, stored in the first kb+1 rows of the array. The !> j-th column of B is stored in the j-th column of the array BB !> as follows: !> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; !> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). !> !> On exit, the factor S from the split Cholesky factorization !> B = S**H*S, as returned by ZPBSTF. !>
LDBB
!> LDBB is INTEGER !> The leading dimension of the array BB. LDBB >= KB+1. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is COMPLEX*16 array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of !> eigenvectors, with the i-th column of Z holding the !> eigenvector associated with W(i). The eigenvectors are !> normalized so that Z**H*B*Z = I. !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= N. !>
WORK
!> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO=0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If N <= 1, LWORK >= 1. !> If JOBZ = 'N' and N > 1, LWORK >= N. !> If JOBZ = 'V' and N > 1, LWORK >= 2*N**2. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) !> On exit, if INFO=0, RWORK(1) returns the optimal LRWORK. !>
LRWORK
!> LRWORK is INTEGER !> The dimension of array RWORK. !> If N <= 1, LRWORK >= 1. !> If JOBZ = 'N' and N > 1, LRWORK >= N. !> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. !> !> If LRWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO=0, IWORK(1) returns the optimal LIWORK. !>
LIWORK
!> LIWORK is INTEGER !> The dimension of array IWORK. !> If JOBZ = 'N' or N <= 1, LIWORK >= 1. !> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, and i is: !> <= N: the algorithm failed to converge: !> i off-diagonal elements of an intermediate !> tridiagonal form did not converge to zero; !> > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF !> returned INFO = i: B is not positive definite. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Definition at line 243 of file zhbgvd.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |