Scroll to navigation

hbevd(3) Library Functions Manual hbevd(3)

NAME

hbevd - {hb,sb}evd: eig, divide and conquer

SYNOPSIS

Functions


subroutine CHBEVD (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
CHBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine DSBEVD (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
DSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine SSBEVD (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
SSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine ZHBEVD (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Detailed Description

Function Documentation

subroutine CHBEVD (character jobz, character uplo, integer n, integer kd, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)

CHBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

!>
!> CHBEVD computes all the eigenvalues and, optionally, eigenvectors of
!> a complex Hermitian band matrix A.  If eigenvectors are desired, it
!> uses a divide and conquer algorithm.
!>
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

KD

!>          KD is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
!> 

AB

!>          AB is COMPLEX array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the Hermitian band
!>          matrix A, stored in the first KD+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>
!>          On exit, AB is overwritten by values generated during the
!>          reduction to tridiagonal form.  If UPLO = 'U', the first
!>          superdiagonal and the diagonal of the tridiagonal matrix T
!>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
!>          the diagonal and first subdiagonal of T are returned in the
!>          first two rows of AB.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD + 1.
!> 

W

!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

Z

!>          Z is COMPLEX array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with W(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 

WORK

!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If N <= 1,               LWORK must be at least 1.
!>          If JOBZ = 'N' and N > 1, LWORK must be at least N.
!>          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK, RWORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

RWORK

!>          RWORK is REAL array,
!>                                         dimension (LRWORK)
!>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
!> 

LRWORK

!>          LRWORK is INTEGER
!>          The dimension of array RWORK.
!>          If N <= 1,               LRWORK must be at least 1.
!>          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
!>          If JOBZ = 'V' and N > 1, LRWORK must be at least
!>                        1 + 5*N + 2*N**2.
!>
!>          If LRWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

IWORK

!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> 

LIWORK

!>          LIWORK is INTEGER
!>          The dimension of array IWORK.
!>          If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
!>          If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of an intermediate tridiagonal
!>                form did not converge to zero.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 207 of file chbevd.f.

subroutine DSBEVD (character jobz, character uplo, integer n, integer kd, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)

DSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

!>
!> DSBEVD computes all the eigenvalues and, optionally, eigenvectors of
!> a real symmetric band matrix A. If eigenvectors are desired, it uses
!> a divide and conquer algorithm.
!>
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

KD

!>          KD is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
!> 

AB

!>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix A, stored in the first KD+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>
!>          On exit, AB is overwritten by values generated during the
!>          reduction to tridiagonal form.  If UPLO = 'U', the first
!>          superdiagonal and the diagonal of the tridiagonal matrix T
!>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
!>          the diagonal and first subdiagonal of T are returned in the
!>          first two rows of AB.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD + 1.
!> 

W

!>          W is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

Z

!>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with W(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 

WORK

!>          WORK is DOUBLE PRECISION array,
!>                                         dimension (LWORK)
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          IF N <= 1,                LWORK must be at least 1.
!>          If JOBZ  = 'N' and N > 2, LWORK must be at least 2*N.
!>          If JOBZ  = 'V' and N > 2, LWORK must be at least
!>                         ( 1 + 5*N + 2*N**2 ).
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK and IWORK
!>          arrays, returns these values as the first entries of the WORK
!>          and IWORK arrays, and no error message related to LWORK or
!>          LIWORK is issued by XERBLA.
!> 

IWORK

!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> 

LIWORK

!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
!>          If JOBZ  = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK and IWORK arrays, and no error message related to
!>          LWORK or LIWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of an intermediate tridiagonal
!>                form did not converge to zero.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 185 of file dsbevd.f.

subroutine SSBEVD (character jobz, character uplo, integer n, integer kd, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)

SSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

!>
!> SSBEVD computes all the eigenvalues and, optionally, eigenvectors of
!> a real symmetric band matrix A. If eigenvectors are desired, it uses
!> a divide and conquer algorithm.
!>
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

KD

!>          KD is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
!> 

AB

!>          AB is REAL array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix A, stored in the first KD+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>
!>          On exit, AB is overwritten by values generated during the
!>          reduction to tridiagonal form.  If UPLO = 'U', the first
!>          superdiagonal and the diagonal of the tridiagonal matrix T
!>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
!>          the diagonal and first subdiagonal of T are returned in the
!>          first two rows of AB.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD + 1.
!> 

W

!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

Z

!>          Z is REAL array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with W(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 

WORK

!>          WORK is REAL array,
!>                                         dimension (LWORK)
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          IF N <= 1,                LWORK must be at least 1.
!>          If JOBZ  = 'N' and N > 2, LWORK must be at least 2*N.
!>          If JOBZ  = 'V' and N > 2, LWORK must be at least
!>                         ( 1 + 5*N + 2*N**2 ).
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK and IWORK
!>          arrays, returns these values as the first entries of the WORK
!>          and IWORK arrays, and no error message related to LWORK or
!>          LIWORK is issued by XERBLA.
!> 

IWORK

!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> 

LIWORK

!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
!>          If JOBZ  = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK and IWORK arrays, and no error message related to
!>          LWORK or LIWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of an intermediate tridiagonal
!>                form did not converge to zero.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 185 of file ssbevd.f.

subroutine ZHBEVD (character jobz, character uplo, integer n, integer kd, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)

ZHBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

!>
!> ZHBEVD computes all the eigenvalues and, optionally, eigenvectors of
!> a complex Hermitian band matrix A.  If eigenvectors are desired, it
!> uses a divide and conquer algorithm.
!>
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

KD

!>          KD is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
!> 

AB

!>          AB is COMPLEX*16 array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the Hermitian band
!>          matrix A, stored in the first KD+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>
!>          On exit, AB is overwritten by values generated during the
!>          reduction to tridiagonal form.  If UPLO = 'U', the first
!>          superdiagonal and the diagonal of the tridiagonal matrix T
!>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
!>          the diagonal and first subdiagonal of T are returned in the
!>          first two rows of AB.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD + 1.
!> 

W

!>          W is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

Z

!>          Z is COMPLEX*16 array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with W(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If N <= 1,               LWORK must be at least 1.
!>          If JOBZ = 'N' and N > 1, LWORK must be at least N.
!>          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK, RWORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array,
!>                                         dimension (LRWORK)
!>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
!> 

LRWORK

!>          LRWORK is INTEGER
!>          The dimension of array RWORK.
!>          If N <= 1,               LRWORK must be at least 1.
!>          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
!>          If JOBZ = 'V' and N > 1, LRWORK must be at least
!>                        1 + 5*N + 2*N**2.
!>
!>          If LRWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

IWORK

!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> 

LIWORK

!>          LIWORK is INTEGER
!>          The dimension of array IWORK.
!>          If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
!>          If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of an intermediate tridiagonal
!>                form did not converge to zero.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 207 of file zhbevd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK