table of contents
hbev_2stage(3) | Library Functions Manual | hbev_2stage(3) |
NAME¶
hbev_2stage - {hb,sb}ev_2stage: eig, QR iteration
SYNOPSIS¶
Functions¶
subroutine CHBEV_2STAGE (jobz, uplo, n, kd, ab, ldab, w, z,
ldz, work, lwork, rwork, info)
CHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or
right eigenvectors for OTHER matrices subroutine DSBEV_2STAGE
(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, info)
DSBEV_2STAGE computes the eigenvalues and, optionally, the left and/or
right eigenvectors for OTHER matrices subroutine SSBEV_2STAGE
(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, info)
SSBEV_2STAGE computes the eigenvalues and, optionally, the left and/or
right eigenvectors for OTHER matrices subroutine ZHBEV_2STAGE
(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, rwork, info)
ZHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or
right eigenvectors for OTHER matrices
Detailed Description¶
Function Documentation¶
subroutine CHBEV_2STAGE (character jobz, character uplo, integer n, integer kd, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer info)¶
CHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> CHBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of !> a complex Hermitian band matrix A using the 2stage technique for !> the reduction to tridiagonal. !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !> Not available in this release. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KD
!> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !>
AB
!> AB is COMPLEX array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first KD+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> !> On exit, AB is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the first !> superdiagonal and the diagonal of the tridiagonal matrix T !> are returned in rows KD and KD+1 of AB, and if UPLO = 'L', !> the diagonal and first subdiagonal of T are returned in the !> first two rows of AB. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD + 1. !>
W
!> W is REAL array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is COMPLEX array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is COMPLEX array, dimension LWORK !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of the array WORK. LWORK >= 1, when N <= 1; !> otherwise !> If JOBZ = 'N' and N > 1, LWORK must be queried. !> LWORK = MAX(1, dimension) where !> dimension = (2KD+1)*N + KD*NTHREADS !> where KD is the size of the band. !> NTHREADS is the number of threads used when !> openMP compilation is enabled, otherwise =1. !> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
RWORK
!> RWORK is REAL array, dimension (max(1,3*N-2)) !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> All details about the 2stage techniques are available in: !> !> Azzam Haidar, Hatem Ltaief, and Jack Dongarra. !> Parallel reduction to condensed forms for symmetric eigenvalue problems !> using aggregated fine-grained and memory-aware kernels. In Proceedings !> of 2011 International Conference for High Performance Computing, !> Networking, Storage and Analysis (SC '11), New York, NY, USA, !> Article 8 , 11 pages. !> http://doi.acm.org/10.1145/2063384.2063394 !> !> A. Haidar, J. Kurzak, P. Luszczek, 2013. !> An improved parallel singular value algorithm and its implementation !> for multicore hardware, In Proceedings of 2013 International Conference !> for High Performance Computing, Networking, Storage and Analysis (SC '13). !> Denver, Colorado, USA, 2013. !> Article 90, 12 pages. !> http://doi.acm.org/10.1145/2503210.2503292 !> !> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. !> A novel hybrid CPU-GPU generalized eigensolver for electronic structure !> calculations based on fine-grained memory aware tasks. !> International Journal of High Performance Computing Applications. !> Volume 28 Issue 2, Pages 196-209, May 2014. !> http://hpc.sagepub.com/content/28/2/196 !> !>
Definition at line 209 of file chbev_2stage.f.
subroutine DSBEV_2STAGE (character jobz, character uplo, integer n, integer kd, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer lwork, integer info)¶
DSBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> DSBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of !> a real symmetric band matrix A using the 2stage technique for !> the reduction to tridiagonal. !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !> Not available in this release. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KD
!> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !>
AB
!> AB is DOUBLE PRECISION array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix A, stored in the first KD+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> !> On exit, AB is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the first !> superdiagonal and the diagonal of the tridiagonal matrix T !> are returned in rows KD and KD+1 of AB, and if UPLO = 'L', !> the diagonal and first subdiagonal of T are returned in the !> first two rows of AB. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD + 1. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is DOUBLE PRECISION array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension LWORK !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of the array WORK. LWORK >= 1, when N <= 1; !> otherwise !> If JOBZ = 'N' and N > 1, LWORK must be queried. !> LWORK = MAX(1, dimension) where !> dimension = (2KD+1)*N + KD*NTHREADS + N !> where KD is the size of the band. !> NTHREADS is the number of threads used when !> openMP compilation is enabled, otherwise =1. !> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> All details about the 2stage techniques are available in: !> !> Azzam Haidar, Hatem Ltaief, and Jack Dongarra. !> Parallel reduction to condensed forms for symmetric eigenvalue problems !> using aggregated fine-grained and memory-aware kernels. In Proceedings !> of 2011 International Conference for High Performance Computing, !> Networking, Storage and Analysis (SC '11), New York, NY, USA, !> Article 8 , 11 pages. !> http://doi.acm.org/10.1145/2063384.2063394 !> !> A. Haidar, J. Kurzak, P. Luszczek, 2013. !> An improved parallel singular value algorithm and its implementation !> for multicore hardware, In Proceedings of 2013 International Conference !> for High Performance Computing, Networking, Storage and Analysis (SC '13). !> Denver, Colorado, USA, 2013. !> Article 90, 12 pages. !> http://doi.acm.org/10.1145/2503210.2503292 !> !> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. !> A novel hybrid CPU-GPU generalized eigensolver for electronic structure !> calculations based on fine-grained memory aware tasks. !> International Journal of High Performance Computing Applications. !> Volume 28 Issue 2, Pages 196-209, May 2014. !> http://hpc.sagepub.com/content/28/2/196 !> !>
Definition at line 202 of file dsbev_2stage.f.
subroutine SSBEV_2STAGE (character jobz, character uplo, integer n, integer kd, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer lwork, integer info)¶
SSBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> SSBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of !> a real symmetric band matrix A using the 2stage technique for !> the reduction to tridiagonal. !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !> Not available in this release. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KD
!> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !>
AB
!> AB is REAL array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the symmetric band !> matrix A, stored in the first KD+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> !> On exit, AB is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the first !> superdiagonal and the diagonal of the tridiagonal matrix T !> are returned in rows KD and KD+1 of AB, and if UPLO = 'L', !> the diagonal and first subdiagonal of T are returned in the !> first two rows of AB. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD + 1. !>
W
!> W is REAL array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is REAL array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is REAL array, dimension LWORK !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of the array WORK. LWORK >= 1, when N <= 1; !> otherwise !> If JOBZ = 'N' and N > 1, LWORK must be queried. !> LWORK = MAX(1, dimension) where !> dimension = (2KD+1)*N + KD*NTHREADS + N !> where KD is the size of the band. !> NTHREADS is the number of threads used when !> openMP compilation is enabled, otherwise =1. !> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> All details about the 2stage techniques are available in: !> !> Azzam Haidar, Hatem Ltaief, and Jack Dongarra. !> Parallel reduction to condensed forms for symmetric eigenvalue problems !> using aggregated fine-grained and memory-aware kernels. In Proceedings !> of 2011 International Conference for High Performance Computing, !> Networking, Storage and Analysis (SC '11), New York, NY, USA, !> Article 8 , 11 pages. !> http://doi.acm.org/10.1145/2063384.2063394 !> !> A. Haidar, J. Kurzak, P. Luszczek, 2013. !> An improved parallel singular value algorithm and its implementation !> for multicore hardware, In Proceedings of 2013 International Conference !> for High Performance Computing, Networking, Storage and Analysis (SC '13). !> Denver, Colorado, USA, 2013. !> Article 90, 12 pages. !> http://doi.acm.org/10.1145/2503210.2503292 !> !> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. !> A novel hybrid CPU-GPU generalized eigensolver for electronic structure !> calculations based on fine-grained memory aware tasks. !> International Journal of High Performance Computing Applications. !> Volume 28 Issue 2, Pages 196-209, May 2014. !> http://hpc.sagepub.com/content/28/2/196 !> !>
Definition at line 202 of file ssbev_2stage.f.
subroutine ZHBEV_2STAGE (character jobz, character uplo, integer n, integer kd, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer info)¶
ZHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> ZHBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of !> a complex Hermitian band matrix A using the 2stage technique for !> the reduction to tridiagonal. !>
Parameters
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !> Not available in this release. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KD
!> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'. KD >= 0. !>
AB
!> AB is COMPLEX*16 array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first KD+1 rows of the array. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). !> !> On exit, AB is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the first !> superdiagonal and the diagonal of the tridiagonal matrix T !> are returned in rows KD and KD+1 of AB, and if UPLO = 'L', !> the diagonal and first subdiagonal of T are returned in the !> first two rows of AB. !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KD + 1. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is COMPLEX*16 array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal !> eigenvectors of the matrix A, with the i-th column of Z !> holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is COMPLEX*16 array, dimension LWORK !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The length of the array WORK. LWORK >= 1, when N <= 1; !> otherwise !> If JOBZ = 'N' and N > 1, LWORK must be queried. !> LWORK = MAX(1, dimension) where !> dimension = (2KD+1)*N + KD*NTHREADS !> where KD is the size of the band. !> NTHREADS is the number of threads used when !> openMP compilation is enabled, otherwise =1. !> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (max(1,3*N-2)) !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = i, the algorithm failed to converge; i !> off-diagonal elements of an intermediate tridiagonal !> form did not converge to zero. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> All details about the 2stage techniques are available in: !> !> Azzam Haidar, Hatem Ltaief, and Jack Dongarra. !> Parallel reduction to condensed forms for symmetric eigenvalue problems !> using aggregated fine-grained and memory-aware kernels. In Proceedings !> of 2011 International Conference for High Performance Computing, !> Networking, Storage and Analysis (SC '11), New York, NY, USA, !> Article 8 , 11 pages. !> http://doi.acm.org/10.1145/2063384.2063394 !> !> A. Haidar, J. Kurzak, P. Luszczek, 2013. !> An improved parallel singular value algorithm and its implementation !> for multicore hardware, In Proceedings of 2013 International Conference !> for High Performance Computing, Networking, Storage and Analysis (SC '13). !> Denver, Colorado, USA, 2013. !> Article 90, 12 pages. !> http://doi.acm.org/10.1145/2503210.2503292 !> !> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. !> A novel hybrid CPU-GPU generalized eigensolver for electronic structure !> calculations based on fine-grained memory aware tasks. !> International Journal of High Performance Computing Applications. !> Volume 28 Issue 2, Pages 196-209, May 2014. !> http://hpc.sagepub.com/content/28/2/196 !> !>
Definition at line 209 of file zhbev_2stage.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |