Scroll to navigation

hbev(3) Library Functions Manual hbev(3)

NAME

hbev - {hb,sb}ev: eig, QR iteration

SYNOPSIS

Functions


subroutine CHBEV (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)
CHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine DSBEV (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
DSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine SSBEV (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
SSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices subroutine ZHBEV (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)
ZHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Detailed Description

Function Documentation

subroutine CHBEV (character jobz, character uplo, integer n, integer kd, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)

CHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

!>
!> CHBEV computes all the eigenvalues and, optionally, eigenvectors of
!> a complex Hermitian band matrix A.
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

KD

!>          KD is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
!> 

AB

!>          AB is COMPLEX array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the Hermitian band
!>          matrix A, stored in the first KD+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>
!>          On exit, AB is overwritten by values generated during the
!>          reduction to tridiagonal form.  If UPLO = 'U', the first
!>          superdiagonal and the diagonal of the tridiagonal matrix T
!>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
!>          the diagonal and first subdiagonal of T are returned in the
!>          first two rows of AB.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD + 1.
!> 

W

!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

Z

!>          Z is COMPLEX array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with W(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 

WORK

!>          WORK is COMPLEX array, dimension (N)
!> 

RWORK

!>          RWORK is REAL array, dimension (max(1,3*N-2))
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of an intermediate tridiagonal
!>                form did not converge to zero.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 150 of file chbev.f.

subroutine DSBEV (character jobz, character uplo, integer n, integer kd, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer info)

DSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

!>
!> DSBEV computes all the eigenvalues and, optionally, eigenvectors of
!> a real symmetric band matrix A.
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

KD

!>          KD is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
!> 

AB

!>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix A, stored in the first KD+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>
!>          On exit, AB is overwritten by values generated during the
!>          reduction to tridiagonal form.  If UPLO = 'U', the first
!>          superdiagonal and the diagonal of the tridiagonal matrix T
!>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
!>          the diagonal and first subdiagonal of T are returned in the
!>          first two rows of AB.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD + 1.
!> 

W

!>          W is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

Z

!>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with W(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (max(1,3*N-2))
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of an intermediate tridiagonal
!>                form did not converge to zero.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 144 of file dsbev.f.

subroutine SSBEV (character jobz, character uplo, integer n, integer kd, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer info)

SSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

!>
!> SSBEV computes all the eigenvalues and, optionally, eigenvectors of
!> a real symmetric band matrix A.
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

KD

!>          KD is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
!> 

AB

!>          AB is REAL array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix A, stored in the first KD+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>
!>          On exit, AB is overwritten by values generated during the
!>          reduction to tridiagonal form.  If UPLO = 'U', the first
!>          superdiagonal and the diagonal of the tridiagonal matrix T
!>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
!>          the diagonal and first subdiagonal of T are returned in the
!>          first two rows of AB.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD + 1.
!> 

W

!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

Z

!>          Z is REAL array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with W(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 

WORK

!>          WORK is REAL array, dimension (max(1,3*N-2))
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of an intermediate tridiagonal
!>                form did not converge to zero.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 144 of file ssbev.f.

subroutine ZHBEV (character jobz, character uplo, integer n, integer kd, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)

ZHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

!>
!> ZHBEV computes all the eigenvalues and, optionally, eigenvectors of
!> a complex Hermitian band matrix A.
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

KD

!>          KD is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
!> 

AB

!>          AB is COMPLEX*16 array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the Hermitian band
!>          matrix A, stored in the first KD+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>
!>          On exit, AB is overwritten by values generated during the
!>          reduction to tridiagonal form.  If UPLO = 'U', the first
!>          superdiagonal and the diagonal of the tridiagonal matrix T
!>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
!>          the diagonal and first subdiagonal of T are returned in the
!>          first two rows of AB.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD + 1.
!> 

W

!>          W is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

Z

!>          Z is COMPLEX*16 array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with W(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 

LDZ

!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (N)
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array, dimension (max(1,3*N-2))
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of an intermediate tridiagonal
!>                form did not converge to zero.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 150 of file zhbev.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK