table of contents
gttrs(3) | Library Functions Manual | gttrs(3) |
NAME¶
gttrs - gttrs: triangular solve using factor
SYNOPSIS¶
Functions¶
subroutine CGTTRS (trans, n, nrhs, dl, d, du, du2, ipiv, b,
ldb, info)
CGTTRS subroutine DGTTRS (trans, n, nrhs, dl, d, du, du2, ipiv,
b, ldb, info)
DGTTRS subroutine SGTTRS (trans, n, nrhs, dl, d, du, du2, ipiv,
b, ldb, info)
SGTTRS subroutine ZGTTRS (trans, n, nrhs, dl, d, du, du2, ipiv,
b, ldb, info)
ZGTTRS
Detailed Description¶
Function Documentation¶
subroutine CGTTRS (character trans, integer n, integer nrhs, complex, dimension( * ) dl, complex, dimension( * ) d, complex, dimension( * ) du, complex, dimension( * ) du2, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, integer info)¶
CGTTRS
Purpose:
!> !> CGTTRS solves one of the systems of equations !> A * X = B, A**T * X = B, or A**H * X = B, !> with a tridiagonal matrix A using the LU factorization computed !> by CGTTRF. !>
Parameters
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations. !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !>
N
!> N is INTEGER !> The order of the matrix A. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is COMPLEX array, dimension (N-1) !> The (n-1) multipliers that define the matrix L from the !> LU factorization of A. !>
D
!> D is COMPLEX array, dimension (N) !> The n diagonal elements of the upper triangular matrix U from !> the LU factorization of A. !>
DU
!> DU is COMPLEX array, dimension (N-1) !> The (n-1) elements of the first super-diagonal of U. !>
DU2
!> DU2 is COMPLEX array, dimension (N-2) !> The (n-2) elements of the second super-diagonal of U. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices; for 1 <= i <= n, row i of the matrix was !> interchanged with row IPIV(i). IPIV(i) will always be either !> i or i+1; IPIV(i) = i indicates a row interchange was not !> required. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the matrix of right hand side vectors B. !> On exit, B is overwritten by the solution vectors X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -k, the k-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 136 of file cgttrs.f.
subroutine DGTTRS (character trans, integer n, integer nrhs, double precision, dimension( * ) dl, double precision, dimension( * ) d, double precision, dimension( * ) du, double precision, dimension( * ) du2, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, integer info)¶
DGTTRS
Purpose:
!> !> DGTTRS solves one of the systems of equations !> A*X = B or A**T*X = B, !> with a tridiagonal matrix A using the LU factorization computed !> by DGTTRF. !>
Parameters
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations. !> = 'N': A * X = B (No transpose) !> = 'T': A**T* X = B (Transpose) !> = 'C': A**T* X = B (Conjugate transpose = Transpose) !>
N
!> N is INTEGER !> The order of the matrix A. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) multipliers that define the matrix L from the !> LU factorization of A. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the upper triangular matrix U from !> the LU factorization of A. !>
DU
!> DU is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) elements of the first super-diagonal of U. !>
DU2
!> DU2 is DOUBLE PRECISION array, dimension (N-2) !> The (n-2) elements of the second super-diagonal of U. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices; for 1 <= i <= n, row i of the matrix was !> interchanged with row IPIV(i). IPIV(i) will always be either !> i or i+1; IPIV(i) = i indicates a row interchange was not !> required. !>
B
!> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the matrix of right hand side vectors B. !> On exit, B is overwritten by the solution vectors X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 136 of file dgttrs.f.
subroutine SGTTRS (character trans, integer n, integer nrhs, real, dimension( * ) dl, real, dimension( * ) d, real, dimension( * ) du, real, dimension( * ) du2, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, integer info)¶
SGTTRS
Purpose:
!> !> SGTTRS solves one of the systems of equations !> A*X = B or A**T*X = B, !> with a tridiagonal matrix A using the LU factorization computed !> by SGTTRF. !>
Parameters
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations. !> = 'N': A * X = B (No transpose) !> = 'T': A**T* X = B (Transpose) !> = 'C': A**T* X = B (Conjugate transpose = Transpose) !>
N
!> N is INTEGER !> The order of the matrix A. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is REAL array, dimension (N-1) !> The (n-1) multipliers that define the matrix L from the !> LU factorization of A. !>
D
!> D is REAL array, dimension (N) !> The n diagonal elements of the upper triangular matrix U from !> the LU factorization of A. !>
DU
!> DU is REAL array, dimension (N-1) !> The (n-1) elements of the first super-diagonal of U. !>
DU2
!> DU2 is REAL array, dimension (N-2) !> The (n-2) elements of the second super-diagonal of U. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices; for 1 <= i <= n, row i of the matrix was !> interchanged with row IPIV(i). IPIV(i) will always be either !> i or i+1; IPIV(i) = i indicates a row interchange was not !> required. !>
B
!> B is REAL array, dimension (LDB,NRHS) !> On entry, the matrix of right hand side vectors B. !> On exit, B is overwritten by the solution vectors X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 136 of file sgttrs.f.
subroutine ZGTTRS (character trans, integer n, integer nrhs, complex*16, dimension( * ) dl, complex*16, dimension( * ) d, complex*16, dimension( * ) du, complex*16, dimension( * ) du2, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)¶
ZGTTRS
Purpose:
!> !> ZGTTRS solves one of the systems of equations !> A * X = B, A**T * X = B, or A**H * X = B, !> with a tridiagonal matrix A using the LU factorization computed !> by ZGTTRF. !>
Parameters
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations. !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !>
N
!> N is INTEGER !> The order of the matrix A. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
DL
!> DL is COMPLEX*16 array, dimension (N-1) !> The (n-1) multipliers that define the matrix L from the !> LU factorization of A. !>
D
!> D is COMPLEX*16 array, dimension (N) !> The n diagonal elements of the upper triangular matrix U from !> the LU factorization of A. !>
DU
!> DU is COMPLEX*16 array, dimension (N-1) !> The (n-1) elements of the first super-diagonal of U. !>
DU2
!> DU2 is COMPLEX*16 array, dimension (N-2) !> The (n-2) elements of the second super-diagonal of U. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices; for 1 <= i <= n, row i of the matrix was !> interchanged with row IPIV(i). IPIV(i) will always be either !> i or i+1; IPIV(i) = i indicates a row interchange was not !> required. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the matrix of right hand side vectors B. !> On exit, B is overwritten by the solution vectors X. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -k, the k-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 136 of file zgttrs.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |