Scroll to navigation

ggev(3) Library Functions Manual ggev(3)

NAME

ggev - ggev: eig, unblocked

SYNOPSIS

Functions


subroutine CGGEV (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
CGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices subroutine DGGEV (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr, work, lwork, info)
DGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices subroutine SGGEV (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr, work, lwork, info)
SGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices subroutine ZGGEV (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
ZGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices

Detailed Description

Function Documentation

subroutine CGGEV (character jobvl, character jobvr, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( * ) alpha, complex, dimension( * ) beta, complex, dimension( ldvl, * ) vl, integer ldvl, complex, dimension( ldvr, * ) vr, integer ldvr, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer info)

CGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices

Purpose:

!>
!> CGGEV computes for a pair of N-by-N complex nonsymmetric matrices
!> (A,B), the generalized eigenvalues, and optionally, the left and/or
!> right generalized eigenvectors.
!>
!> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
!> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
!> singular. It is usually represented as the pair (alpha,beta), as
!> there is a reasonable interpretation for beta=0, and even for both
!> being zero.
!>
!> The right generalized eigenvector v(j) corresponding to the
!> generalized eigenvalue lambda(j) of (A,B) satisfies
!>
!>              A * v(j) = lambda(j) * B * v(j).
!>
!> The left generalized eigenvector u(j) corresponding to the
!> generalized eigenvalues lambda(j) of (A,B) satisfies
!>
!>              u(j)**H * A = lambda(j) * u(j)**H * B
!>
!> where u(j)**H is the conjugate-transpose of u(j).
!> 

Parameters

JOBVL

!>          JOBVL is CHARACTER*1
!>          = 'N':  do not compute the left generalized eigenvectors;
!>          = 'V':  compute the left generalized eigenvectors.
!> 

JOBVR

!>          JOBVR is CHARACTER*1
!>          = 'N':  do not compute the right generalized eigenvectors;
!>          = 'V':  compute the right generalized eigenvectors.
!> 

N

!>          N is INTEGER
!>          The order of the matrices A, B, VL, and VR.  N >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA, N)
!>          On entry, the matrix A in the pair (A,B).
!>          On exit, A has been overwritten.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of A.  LDA >= max(1,N).
!> 

B

!>          B is COMPLEX array, dimension (LDB, N)
!>          On entry, the matrix B in the pair (A,B).
!>          On exit, B has been overwritten.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of B.  LDB >= max(1,N).
!> 

ALPHA

!>          ALPHA is COMPLEX array, dimension (N)
!> 

BETA

!>          BETA is COMPLEX array, dimension (N)
!>          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
!>          generalized eigenvalues.
!>
!>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
!>          underflow, and BETA(j) may even be zero.  Thus, the user
!>          should avoid naively computing the ratio alpha/beta.
!>          However, ALPHA will be always less than and usually
!>          comparable with norm(A) in magnitude, and BETA always less
!>          than and usually comparable with norm(B).
!> 

VL

!>          VL is COMPLEX array, dimension (LDVL,N)
!>          If JOBVL = 'V', the left generalized eigenvectors u(j) are
!>          stored one after another in the columns of VL, in the same
!>          order as their eigenvalues.
!>          Each eigenvector is scaled so the largest component has
!>          abs(real part) + abs(imag. part) = 1.
!>          Not referenced if JOBVL = 'N'.
!> 

LDVL

!>          LDVL is INTEGER
!>          The leading dimension of the matrix VL. LDVL >= 1, and
!>          if JOBVL = 'V', LDVL >= N.
!> 

VR

!>          VR is COMPLEX array, dimension (LDVR,N)
!>          If JOBVR = 'V', the right generalized eigenvectors v(j) are
!>          stored one after another in the columns of VR, in the same
!>          order as their eigenvalues.
!>          Each eigenvector is scaled so the largest component has
!>          abs(real part) + abs(imag. part) = 1.
!>          Not referenced if JOBVR = 'N'.
!> 

LDVR

!>          LDVR is INTEGER
!>          The leading dimension of the matrix VR. LDVR >= 1, and
!>          if JOBVR = 'V', LDVR >= N.
!> 

WORK

!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.  LWORK >= max(1,2*N).
!>          For good performance, LWORK must generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

RWORK

!>          RWORK is REAL array, dimension (8*N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          =1,...,N:
!>                The QZ iteration failed.  No eigenvectors have been
!>                calculated, but ALPHA(j) and BETA(j) should be
!>                correct for j=INFO+1,...,N.
!>          > N:  =N+1: other then QZ iteration failed in CHGEQZ,
!>                =N+2: error return from CTGEVC.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 215 of file cggev.f.

subroutine DGGEV (character jobvl, character jobvr, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) alphar, double precision, dimension( * ) alphai, double precision, dimension( * ) beta, double precision, dimension( ldvl, * ) vl, integer ldvl, double precision, dimension( ldvr, * ) vr, integer ldvr, double precision, dimension( * ) work, integer lwork, integer info)

DGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices

Purpose:

!>
!> DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
!> the generalized eigenvalues, and optionally, the left and/or right
!> generalized eigenvectors.
!>
!> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
!> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
!> singular. It is usually represented as the pair (alpha,beta), as
!> there is a reasonable interpretation for beta=0, and even for both
!> being zero.
!>
!> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
!> of (A,B) satisfies
!>
!>                  A * v(j) = lambda(j) * B * v(j).
!>
!> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
!> of (A,B) satisfies
!>
!>                  u(j)**H * A  = lambda(j) * u(j)**H * B .
!>
!> where u(j)**H is the conjugate-transpose of u(j).
!>
!> 

Parameters

JOBVL

!>          JOBVL is CHARACTER*1
!>          = 'N':  do not compute the left generalized eigenvectors;
!>          = 'V':  compute the left generalized eigenvectors.
!> 

JOBVR

!>          JOBVR is CHARACTER*1
!>          = 'N':  do not compute the right generalized eigenvectors;
!>          = 'V':  compute the right generalized eigenvectors.
!> 

N

!>          N is INTEGER
!>          The order of the matrices A, B, VL, and VR.  N >= 0.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA, N)
!>          On entry, the matrix A in the pair (A,B).
!>          On exit, A has been overwritten.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of A.  LDA >= max(1,N).
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDB, N)
!>          On entry, the matrix B in the pair (A,B).
!>          On exit, B has been overwritten.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of B.  LDB >= max(1,N).
!> 

ALPHAR

!>          ALPHAR is DOUBLE PRECISION array, dimension (N)
!> 

ALPHAI

!>          ALPHAI is DOUBLE PRECISION array, dimension (N)
!> 

BETA

!>          BETA is DOUBLE PRECISION array, dimension (N)
!>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
!>          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
!>          the j-th eigenvalue is real; if positive, then the j-th and
!>          (j+1)-st eigenvalues are a complex conjugate pair, with
!>          ALPHAI(j+1) negative.
!>
!>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
!>          may easily over- or underflow, and BETA(j) may even be zero.
!>          Thus, the user should avoid naively computing the ratio
!>          alpha/beta.  However, ALPHAR and ALPHAI will be always less
!>          than and usually comparable with norm(A) in magnitude, and
!>          BETA always less than and usually comparable with norm(B).
!> 

VL

!>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
!>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
!>          after another in the columns of VL, in the same order as
!>          their eigenvalues. If the j-th eigenvalue is real, then
!>          u(j) = VL(:,j), the j-th column of VL. If the j-th and
!>          (j+1)-th eigenvalues form a complex conjugate pair, then
!>          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
!>          Each eigenvector is scaled so the largest component has
!>          abs(real part)+abs(imag. part)=1.
!>          Not referenced if JOBVL = 'N'.
!> 

LDVL

!>          LDVL is INTEGER
!>          The leading dimension of the matrix VL. LDVL >= 1, and
!>          if JOBVL = 'V', LDVL >= N.
!> 

VR

!>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
!>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
!>          after another in the columns of VR, in the same order as
!>          their eigenvalues. If the j-th eigenvalue is real, then
!>          v(j) = VR(:,j), the j-th column of VR. If the j-th and
!>          (j+1)-th eigenvalues form a complex conjugate pair, then
!>          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
!>          Each eigenvector is scaled so the largest component has
!>          abs(real part)+abs(imag. part)=1.
!>          Not referenced if JOBVR = 'N'.
!> 

LDVR

!>          LDVR is INTEGER
!>          The leading dimension of the matrix VR. LDVR >= 1, and
!>          if JOBVR = 'V', LDVR >= N.
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.  LWORK >= max(1,8*N).
!>          For good performance, LWORK must generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          = 1,...,N:
!>                The QZ iteration failed.  No eigenvectors have been
!>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
!>                should be correct for j=INFO+1,...,N.
!>          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
!>                =N+2: error return from DTGEVC.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 224 of file dggev.f.

subroutine SGGEV (character jobvl, character jobvr, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) alphar, real, dimension( * ) alphai, real, dimension( * ) beta, real, dimension( ldvl, * ) vl, integer ldvl, real, dimension( ldvr, * ) vr, integer ldvr, real, dimension( * ) work, integer lwork, integer info)

SGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices

Purpose:

!>
!> SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
!> the generalized eigenvalues, and optionally, the left and/or right
!> generalized eigenvectors.
!>
!> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
!> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
!> singular. It is usually represented as the pair (alpha,beta), as
!> there is a reasonable interpretation for beta=0, and even for both
!> being zero.
!>
!> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
!> of (A,B) satisfies
!>
!>                  A * v(j) = lambda(j) * B * v(j).
!>
!> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
!> of (A,B) satisfies
!>
!>                  u(j)**H * A  = lambda(j) * u(j)**H * B .
!>
!> where u(j)**H is the conjugate-transpose of u(j).
!>
!> 

Parameters

JOBVL

!>          JOBVL is CHARACTER*1
!>          = 'N':  do not compute the left generalized eigenvectors;
!>          = 'V':  compute the left generalized eigenvectors.
!> 

JOBVR

!>          JOBVR is CHARACTER*1
!>          = 'N':  do not compute the right generalized eigenvectors;
!>          = 'V':  compute the right generalized eigenvectors.
!> 

N

!>          N is INTEGER
!>          The order of the matrices A, B, VL, and VR.  N >= 0.
!> 

A

!>          A is REAL array, dimension (LDA, N)
!>          On entry, the matrix A in the pair (A,B).
!>          On exit, A has been overwritten.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of A.  LDA >= max(1,N).
!> 

B

!>          B is REAL array, dimension (LDB, N)
!>          On entry, the matrix B in the pair (A,B).
!>          On exit, B has been overwritten.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of B.  LDB >= max(1,N).
!> 

ALPHAR

!>          ALPHAR is REAL array, dimension (N)
!> 

ALPHAI

!>          ALPHAI is REAL array, dimension (N)
!> 

BETA

!>          BETA is REAL array, dimension (N)
!>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
!>          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
!>          the j-th eigenvalue is real; if positive, then the j-th and
!>          (j+1)-st eigenvalues are a complex conjugate pair, with
!>          ALPHAI(j+1) negative.
!>
!>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
!>          may easily over- or underflow, and BETA(j) may even be zero.
!>          Thus, the user should avoid naively computing the ratio
!>          alpha/beta.  However, ALPHAR and ALPHAI will be always less
!>          than and usually comparable with norm(A) in magnitude, and
!>          BETA always less than and usually comparable with norm(B).
!> 

VL

!>          VL is REAL array, dimension (LDVL,N)
!>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
!>          after another in the columns of VL, in the same order as
!>          their eigenvalues. If the j-th eigenvalue is real, then
!>          u(j) = VL(:,j), the j-th column of VL. If the j-th and
!>          (j+1)-th eigenvalues form a complex conjugate pair, then
!>          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
!>          Each eigenvector is scaled so the largest component has
!>          abs(real part)+abs(imag. part)=1.
!>          Not referenced if JOBVL = 'N'.
!> 

LDVL

!>          LDVL is INTEGER
!>          The leading dimension of the matrix VL. LDVL >= 1, and
!>          if JOBVL = 'V', LDVL >= N.
!> 

VR

!>          VR is REAL array, dimension (LDVR,N)
!>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
!>          after another in the columns of VR, in the same order as
!>          their eigenvalues. If the j-th eigenvalue is real, then
!>          v(j) = VR(:,j), the j-th column of VR. If the j-th and
!>          (j+1)-th eigenvalues form a complex conjugate pair, then
!>          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
!>          Each eigenvector is scaled so the largest component has
!>          abs(real part)+abs(imag. part)=1.
!>          Not referenced if JOBVR = 'N'.
!> 

LDVR

!>          LDVR is INTEGER
!>          The leading dimension of the matrix VR. LDVR >= 1, and
!>          if JOBVR = 'V', LDVR >= N.
!> 

WORK

!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.  LWORK >= max(1,8*N).
!>          For good performance, LWORK must generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          = 1,...,N:
!>                The QZ iteration failed.  No eigenvectors have been
!>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
!>                should be correct for j=INFO+1,...,N.
!>          > N:  =N+1: other than QZ iteration failed in SHGEQZ.
!>                =N+2: error return from STGEVC.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 224 of file sggev.f.

subroutine ZGGEV (character jobvl, character jobvr, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) alpha, complex*16, dimension( * ) beta, complex*16, dimension( ldvl, * ) vl, integer ldvl, complex*16, dimension( ldvr, * ) vr, integer ldvr, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer info)

ZGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices

Purpose:

!>
!> ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices
!> (A,B), the generalized eigenvalues, and optionally, the left and/or
!> right generalized eigenvectors.
!>
!> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
!> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
!> singular. It is usually represented as the pair (alpha,beta), as
!> there is a reasonable interpretation for beta=0, and even for both
!> being zero.
!>
!> The right generalized eigenvector v(j) corresponding to the
!> generalized eigenvalue lambda(j) of (A,B) satisfies
!>
!>              A * v(j) = lambda(j) * B * v(j).
!>
!> The left generalized eigenvector u(j) corresponding to the
!> generalized eigenvalues lambda(j) of (A,B) satisfies
!>
!>              u(j)**H * A = lambda(j) * u(j)**H * B
!>
!> where u(j)**H is the conjugate-transpose of u(j).
!> 

Parameters

JOBVL

!>          JOBVL is CHARACTER*1
!>          = 'N':  do not compute the left generalized eigenvectors;
!>          = 'V':  compute the left generalized eigenvectors.
!> 

JOBVR

!>          JOBVR is CHARACTER*1
!>          = 'N':  do not compute the right generalized eigenvectors;
!>          = 'V':  compute the right generalized eigenvectors.
!> 

N

!>          N is INTEGER
!>          The order of the matrices A, B, VL, and VR.  N >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA, N)
!>          On entry, the matrix A in the pair (A,B).
!>          On exit, A has been overwritten.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of A.  LDA >= max(1,N).
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB, N)
!>          On entry, the matrix B in the pair (A,B).
!>          On exit, B has been overwritten.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of B.  LDB >= max(1,N).
!> 

ALPHA

!>          ALPHA is COMPLEX*16 array, dimension (N)
!> 

BETA

!>          BETA is COMPLEX*16 array, dimension (N)
!>          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
!>          generalized eigenvalues.
!>
!>          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
!>          underflow, and BETA(j) may even be zero.  Thus, the user
!>          should avoid naively computing the ratio alpha/beta.
!>          However, ALPHA will be always less than and usually
!>          comparable with norm(A) in magnitude, and BETA always less
!>          than and usually comparable with norm(B).
!> 

VL

!>          VL is COMPLEX*16 array, dimension (LDVL,N)
!>          If JOBVL = 'V', the left generalized eigenvectors u(j) are
!>          stored one after another in the columns of VL, in the same
!>          order as their eigenvalues.
!>          Each eigenvector is scaled so the largest component has
!>          abs(real part) + abs(imag. part) = 1.
!>          Not referenced if JOBVL = 'N'.
!> 

LDVL

!>          LDVL is INTEGER
!>          The leading dimension of the matrix VL. LDVL >= 1, and
!>          if JOBVL = 'V', LDVL >= N.
!> 

VR

!>          VR is COMPLEX*16 array, dimension (LDVR,N)
!>          If JOBVR = 'V', the right generalized eigenvectors v(j) are
!>          stored one after another in the columns of VR, in the same
!>          order as their eigenvalues.
!>          Each eigenvector is scaled so the largest component has
!>          abs(real part) + abs(imag. part) = 1.
!>          Not referenced if JOBVR = 'N'.
!> 

LDVR

!>          LDVR is INTEGER
!>          The leading dimension of the matrix VR. LDVR >= 1, and
!>          if JOBVR = 'V', LDVR >= N.
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.  LWORK >= max(1,2*N).
!>          For good performance, LWORK must generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array, dimension (8*N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          =1,...,N:
!>                The QZ iteration failed.  No eigenvectors have been
!>                calculated, but ALPHA(j) and BETA(j) should be
!>                correct for j=INFO+1,...,N.
!>          > N:  =N+1: other then QZ iteration failed in ZHGEQZ,
!>                =N+2: error return from ZTGEVC.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 215 of file zggev.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK