Scroll to navigation

ggbak(3) Library Functions Manual ggbak(3)

NAME

ggbak - ggbak: back-transform eigvec

SYNOPSIS

Functions


subroutine CGGBAK (job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
CGGBAK subroutine DGGBAK (job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
DGGBAK subroutine SGGBAK (job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
SGGBAK subroutine ZGGBAK (job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
ZGGBAK

Detailed Description

Function Documentation

subroutine CGGBAK (character job, character side, integer n, integer ilo, integer ihi, real, dimension( * ) lscale, real, dimension( * ) rscale, integer m, complex, dimension( ldv, * ) v, integer ldv, integer info)

CGGBAK

Purpose:

!>
!> CGGBAK forms the right or left eigenvectors of a complex generalized
!> eigenvalue problem A*x = lambda*B*x, by backward transformation on
!> the computed eigenvectors of the balanced pair of matrices output by
!> CGGBAL.
!> 

Parameters

JOB

!>          JOB is CHARACTER*1
!>          Specifies the type of backward transformation required:
!>          = 'N':  do nothing, return immediately;
!>          = 'P':  do backward transformation for permutation only;
!>          = 'S':  do backward transformation for scaling only;
!>          = 'B':  do backward transformations for both permutation and
!>                  scaling.
!>          JOB must be the same as the argument JOB supplied to CGGBAL.
!> 

SIDE

!>          SIDE is CHARACTER*1
!>          = 'R':  V contains right eigenvectors;
!>          = 'L':  V contains left eigenvectors.
!> 

N

!>          N is INTEGER
!>          The number of rows of the matrix V.  N >= 0.
!> 

ILO

!>          ILO is INTEGER
!> 

IHI

!>          IHI is INTEGER
!>          The integers ILO and IHI determined by CGGBAL.
!>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
!> 

LSCALE

!>          LSCALE is REAL array, dimension (N)
!>          Details of the permutations and/or scaling factors applied
!>          to the left side of A and B, as returned by CGGBAL.
!> 

RSCALE

!>          RSCALE is REAL array, dimension (N)
!>          Details of the permutations and/or scaling factors applied
!>          to the right side of A and B, as returned by CGGBAL.
!> 

M

!>          M is INTEGER
!>          The number of columns of the matrix V.  M >= 0.
!> 

V

!>          V is COMPLEX array, dimension (LDV,M)
!>          On entry, the matrix of right or left eigenvectors to be
!>          transformed, as returned by CTGEVC.
!>          On exit, V is overwritten by the transformed eigenvectors.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the matrix V. LDV >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  See R.C. Ward, Balancing the generalized eigenvalue problem,
!>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
!> 

Definition at line 146 of file cggbak.f.

subroutine DGGBAK (character job, character side, integer n, integer ilo, integer ihi, double precision, dimension( * ) lscale, double precision, dimension( * ) rscale, integer m, double precision, dimension( ldv, * ) v, integer ldv, integer info)

DGGBAK

Purpose:

!>
!> DGGBAK forms the right or left eigenvectors of a real generalized
!> eigenvalue problem A*x = lambda*B*x, by backward transformation on
!> the computed eigenvectors of the balanced pair of matrices output by
!> DGGBAL.
!> 

Parameters

JOB

!>          JOB is CHARACTER*1
!>          Specifies the type of backward transformation required:
!>          = 'N':  do nothing, return immediately;
!>          = 'P':  do backward transformation for permutation only;
!>          = 'S':  do backward transformation for scaling only;
!>          = 'B':  do backward transformations for both permutation and
!>                  scaling.
!>          JOB must be the same as the argument JOB supplied to DGGBAL.
!> 

SIDE

!>          SIDE is CHARACTER*1
!>          = 'R':  V contains right eigenvectors;
!>          = 'L':  V contains left eigenvectors.
!> 

N

!>          N is INTEGER
!>          The number of rows of the matrix V.  N >= 0.
!> 

ILO

!>          ILO is INTEGER
!> 

IHI

!>          IHI is INTEGER
!>          The integers ILO and IHI determined by DGGBAL.
!>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
!> 

LSCALE

!>          LSCALE is DOUBLE PRECISION array, dimension (N)
!>          Details of the permutations and/or scaling factors applied
!>          to the left side of A and B, as returned by DGGBAL.
!> 

RSCALE

!>          RSCALE is DOUBLE PRECISION array, dimension (N)
!>          Details of the permutations and/or scaling factors applied
!>          to the right side of A and B, as returned by DGGBAL.
!> 

M

!>          M is INTEGER
!>          The number of columns of the matrix V.  M >= 0.
!> 

V

!>          V is DOUBLE PRECISION array, dimension (LDV,M)
!>          On entry, the matrix of right or left eigenvectors to be
!>          transformed, as returned by DTGEVC.
!>          On exit, V is overwritten by the transformed eigenvectors.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the matrix V. LDV >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  See R.C. Ward, Balancing the generalized eigenvalue problem,
!>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
!> 

Definition at line 145 of file dggbak.f.

subroutine SGGBAK (character job, character side, integer n, integer ilo, integer ihi, real, dimension( * ) lscale, real, dimension( * ) rscale, integer m, real, dimension( ldv, * ) v, integer ldv, integer info)

SGGBAK

Purpose:

!>
!> SGGBAK forms the right or left eigenvectors of a real generalized
!> eigenvalue problem A*x = lambda*B*x, by backward transformation on
!> the computed eigenvectors of the balanced pair of matrices output by
!> SGGBAL.
!> 

Parameters

JOB

!>          JOB is CHARACTER*1
!>          Specifies the type of backward transformation required:
!>          = 'N':  do nothing, return immediately;
!>          = 'P':  do backward transformation for permutation only;
!>          = 'S':  do backward transformation for scaling only;
!>          = 'B':  do backward transformations for both permutation and
!>                  scaling.
!>          JOB must be the same as the argument JOB supplied to SGGBAL.
!> 

SIDE

!>          SIDE is CHARACTER*1
!>          = 'R':  V contains right eigenvectors;
!>          = 'L':  V contains left eigenvectors.
!> 

N

!>          N is INTEGER
!>          The number of rows of the matrix V.  N >= 0.
!> 

ILO

!>          ILO is INTEGER
!> 

IHI

!>          IHI is INTEGER
!>          The integers ILO and IHI determined by SGGBAL.
!>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
!> 

LSCALE

!>          LSCALE is REAL array, dimension (N)
!>          Details of the permutations and/or scaling factors applied
!>          to the left side of A and B, as returned by SGGBAL.
!> 

RSCALE

!>          RSCALE is REAL array, dimension (N)
!>          Details of the permutations and/or scaling factors applied
!>          to the right side of A and B, as returned by SGGBAL.
!> 

M

!>          M is INTEGER
!>          The number of columns of the matrix V.  M >= 0.
!> 

V

!>          V is REAL array, dimension (LDV,M)
!>          On entry, the matrix of right or left eigenvectors to be
!>          transformed, as returned by STGEVC.
!>          On exit, V is overwritten by the transformed eigenvectors.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the matrix V. LDV >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  See R.C. Ward, Balancing the generalized eigenvalue problem,
!>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
!> 

Definition at line 145 of file sggbak.f.

subroutine ZGGBAK (character job, character side, integer n, integer ilo, integer ihi, double precision, dimension( * ) lscale, double precision, dimension( * ) rscale, integer m, complex*16, dimension( ldv, * ) v, integer ldv, integer info)

ZGGBAK

Purpose:

!>
!> ZGGBAK forms the right or left eigenvectors of a complex generalized
!> eigenvalue problem A*x = lambda*B*x, by backward transformation on
!> the computed eigenvectors of the balanced pair of matrices output by
!> ZGGBAL.
!> 

Parameters

JOB

!>          JOB is CHARACTER*1
!>          Specifies the type of backward transformation required:
!>          = 'N':  do nothing, return immediately;
!>          = 'P':  do backward transformation for permutation only;
!>          = 'S':  do backward transformation for scaling only;
!>          = 'B':  do backward transformations for both permutation and
!>                  scaling.
!>          JOB must be the same as the argument JOB supplied to ZGGBAL.
!> 

SIDE

!>          SIDE is CHARACTER*1
!>          = 'R':  V contains right eigenvectors;
!>          = 'L':  V contains left eigenvectors.
!> 

N

!>          N is INTEGER
!>          The number of rows of the matrix V.  N >= 0.
!> 

ILO

!>          ILO is INTEGER
!> 

IHI

!>          IHI is INTEGER
!>          The integers ILO and IHI determined by ZGGBAL.
!>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
!> 

LSCALE

!>          LSCALE is DOUBLE PRECISION array, dimension (N)
!>          Details of the permutations and/or scaling factors applied
!>          to the left side of A and B, as returned by ZGGBAL.
!> 

RSCALE

!>          RSCALE is DOUBLE PRECISION array, dimension (N)
!>          Details of the permutations and/or scaling factors applied
!>          to the right side of A and B, as returned by ZGGBAL.
!> 

M

!>          M is INTEGER
!>          The number of columns of the matrix V.  M >= 0.
!> 

V

!>          V is COMPLEX*16 array, dimension (LDV,M)
!>          On entry, the matrix of right or left eigenvectors to be
!>          transformed, as returned by ZTGEVC.
!>          On exit, V is overwritten by the transformed eigenvectors.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the matrix V. LDV >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  See R.C. Ward, Balancing the generalized eigenvalue problem,
!>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
!> 

Definition at line 146 of file zggbak.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK