table of contents
gerq2(3) | Library Functions Manual | gerq2(3) |
NAME¶
gerq2 - gerq2: RQ factor, level 2
SYNOPSIS¶
Functions¶
subroutine CGERQ2 (m, n, a, lda, tau, work, info)
CGERQ2 computes the RQ factorization of a general rectangular matrix
using an unblocked algorithm. subroutine DGERQ2 (m, n, a, lda, tau,
work, info)
DGERQ2 computes the RQ factorization of a general rectangular matrix
using an unblocked algorithm. subroutine SGERQ2 (m, n, a, lda, tau,
work, info)
SGERQ2 computes the RQ factorization of a general rectangular matrix
using an unblocked algorithm. subroutine ZGERQ2 (m, n, a, lda, tau,
work, info)
ZGERQ2 computes the RQ factorization of a general rectangular matrix
using an unblocked algorithm.
Detailed Description¶
Function Documentation¶
subroutine CGERQ2 (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info)¶
CGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> CGERQ2 computes an RQ factorization of a complex m by n matrix A: !> A = R * Q. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, if m <= n, the upper triangle of the subarray !> A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; !> if m >= n, the elements on and above the (m-n)-th subdiagonal !> contain the m by n upper trapezoidal matrix R; the remaining !> elements, with the array TAU, represent the unitary matrix !> Q as a product of elementary reflectors (see Further !> Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is COMPLEX array, dimension (M) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on !> exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). !>
Definition at line 122 of file cgerq2.f.
subroutine DGERQ2 (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info)¶
DGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> DGERQ2 computes an RQ factorization of a real m by n matrix A: !> A = R * Q. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, if m <= n, the upper triangle of the subarray !> A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; !> if m >= n, the elements on and above the (m-n)-th subdiagonal !> contain the m by n upper trapezoidal matrix R; the remaining !> elements, with the array TAU, represent the orthogonal matrix !> Q as a product of elementary reflectors (see Further !> Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (M) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in !> A(m-k+i,1:n-k+i-1), and tau in TAU(i). !>
Definition at line 122 of file dgerq2.f.
subroutine SGERQ2 (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info)¶
SGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> SGERQ2 computes an RQ factorization of a real m by n matrix A: !> A = R * Q. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, if m <= n, the upper triangle of the subarray !> A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; !> if m >= n, the elements on and above the (m-n)-th subdiagonal !> contain the m by n upper trapezoidal matrix R; the remaining !> elements, with the array TAU, represent the orthogonal matrix !> Q as a product of elementary reflectors (see Further !> Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is REAL array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is REAL array, dimension (M) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in !> A(m-k+i,1:n-k+i-1), and tau in TAU(i). !>
Definition at line 122 of file sgerq2.f.
subroutine ZGERQ2 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)¶
ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> ZGERQ2 computes an RQ factorization of a complex m by n matrix A: !> A = R * Q. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, if m <= n, the upper triangle of the subarray !> A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; !> if m >= n, the elements on and above the (m-n)-th subdiagonal !> contain the m by n upper trapezoidal matrix R; the remaining !> elements, with the array TAU, represent the unitary matrix !> Q as a product of elementary reflectors (see Further !> Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is COMPLEX*16 array, dimension (M) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on !> exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). !>
Definition at line 122 of file zgerq2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |