table of contents
geqr2(3) | Library Functions Manual | geqr2(3) |
NAME¶
geqr2 - geqr2: QR factor, level 2
SYNOPSIS¶
Functions¶
subroutine CGEQR2 (m, n, a, lda, tau, work, info)
CGEQR2 computes the QR factorization of a general rectangular matrix
using an unblocked algorithm. subroutine DGEQR2 (m, n, a, lda, tau,
work, info)
DGEQR2 computes the QR factorization of a general rectangular matrix
using an unblocked algorithm. subroutine SGEQR2 (m, n, a, lda, tau,
work, info)
SGEQR2 computes the QR factorization of a general rectangular matrix
using an unblocked algorithm. subroutine ZGEQR2 (m, n, a, lda, tau,
work, info)
ZGEQR2 computes the QR factorization of a general rectangular matrix
using an unblocked algorithm.
Detailed Description¶
Function Documentation¶
subroutine CGEQR2 (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info)¶
CGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> CGEQR2 computes a QR factorization of a complex m-by-n matrix A: !> !> A = Q * ( R ), !> ( 0 ) !> !> where: !> !> Q is a m-by-m orthogonal matrix; !> R is an upper-triangular n-by-n matrix; !> 0 is a (m-n)-by-n zero matrix, if m > n. !> !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the min(m,n) by n upper trapezoidal matrix R (R is !> upper triangular if m >= n); the elements below the diagonal, !> with the array TAU, represent the unitary matrix Q as a !> product of elementary reflectors (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is COMPLEX array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), !> and tau in TAU(i). !>
Definition at line 129 of file cgeqr2.f.
subroutine DGEQR2 (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info)¶
DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> DGEQR2 computes a QR factorization of a real m-by-n matrix A: !> !> A = Q * ( R ), !> ( 0 ) !> !> where: !> !> Q is a m-by-m orthogonal matrix; !> R is an upper-triangular n-by-n matrix; !> 0 is a (m-n)-by-n zero matrix, if m > n. !> !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the min(m,n) by n upper trapezoidal matrix R (R is !> upper triangular if m >= n); the elements below the diagonal, !> with the array TAU, represent the orthogonal matrix Q as a !> product of elementary reflectors (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), !> and tau in TAU(i). !>
Definition at line 129 of file dgeqr2.f.
subroutine SGEQR2 (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info)¶
SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> SGEQR2 computes a QR factorization of a real m-by-n matrix A: !> !> A = Q * ( R ), !> ( 0 ) !> !> where: !> !> Q is a m-by-m orthogonal matrix; !> R is an upper-triangular n-by-n matrix; !> 0 is a (m-n)-by-n zero matrix, if m > n. !> !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the min(m,n) by n upper trapezoidal matrix R (R is !> upper triangular if m >= n); the elements below the diagonal, !> with the array TAU, represent the orthogonal matrix Q as a !> product of elementary reflectors (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is REAL array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is REAL array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), !> and tau in TAU(i). !>
Definition at line 129 of file sgeqr2.f.
subroutine ZGEQR2 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)¶
ZGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
!> !> ZGEQR2 computes a QR factorization of a complex m-by-n matrix A: !> !> A = Q * ( R ), !> ( 0 ) !> !> where: !> !> Q is a m-by-m orthogonal matrix; !> R is an upper-triangular n-by-n matrix; !> 0 is a (m-n)-by-n zero matrix, if m > n. !> !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the min(m,n) by n upper trapezoidal matrix R (R is !> upper triangular if m >= n); the elements below the diagonal, !> with the array TAU, represent the unitary matrix Q as a !> product of elementary reflectors (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is COMPLEX*16 array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), !> and tau in TAU(i). !>
Definition at line 129 of file zgeqr2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |