table of contents
geqlf(3) | Library Functions Manual | geqlf(3) |
NAME¶
geqlf - geqlf: QL factor
SYNOPSIS¶
Functions¶
subroutine CGEQLF (m, n, a, lda, tau, work, lwork, info)
CGEQLF subroutine DGEQLF (m, n, a, lda, tau, work, lwork, info)
DGEQLF subroutine SGEQLF (m, n, a, lda, tau, work, lwork, info)
SGEQLF subroutine ZGEQLF (m, n, a, lda, tau, work, lwork, info)
ZGEQLF
Detailed Description¶
Function Documentation¶
subroutine CGEQLF (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer lwork, integer info)¶
CGEQLF
Purpose:
!> !> CGEQLF computes a QL factorization of a complex M-by-N matrix A: !> A = Q * L. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, !> if m >= n, the lower triangle of the subarray !> A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; !> if m <= n, the elements on and below the (n-m)-th !> superdiagonal contain the M-by-N lower trapezoidal matrix L; !> the remaining elements, with the array TAU, represent the !> unitary matrix Q as a product of elementary reflectors !> (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N). !> For optimum performance LWORK >= N*NB, where NB is !> the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(k) . . . H(2) H(1), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in !> A(1:m-k+i-1,n-k+i), and tau in TAU(i). !>
Definition at line 137 of file cgeqlf.f.
subroutine DGEQLF (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer lwork, integer info)¶
DGEQLF
Purpose:
!> !> DGEQLF computes a QL factorization of a real M-by-N matrix A: !> A = Q * L. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, !> if m >= n, the lower triangle of the subarray !> A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; !> if m <= n, the elements on and below the (n-m)-th !> superdiagonal contain the M-by-N lower trapezoidal matrix L; !> the remaining elements, with the array TAU, represent the !> orthogonal matrix Q as a product of elementary reflectors !> (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N). !> For optimum performance LWORK >= N*NB, where NB is the !> optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(k) . . . H(2) H(1), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in !> A(1:m-k+i-1,n-k+i), and tau in TAU(i). !>
Definition at line 137 of file dgeqlf.f.
subroutine SGEQLF (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)¶
SGEQLF
Purpose:
!> !> SGEQLF computes a QL factorization of a real M-by-N matrix A: !> A = Q * L. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, !> if m >= n, the lower triangle of the subarray !> A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; !> if m <= n, the elements on and below the (n-m)-th !> superdiagonal contain the M-by-N lower trapezoidal matrix L; !> the remaining elements, with the array TAU, represent the !> orthogonal matrix Q as a product of elementary reflectors !> (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is REAL array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N). !> For optimum performance LWORK >= N*NB, where NB is the !> optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(k) . . . H(2) H(1), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in !> A(1:m-k+i-1,n-k+i), and tau in TAU(i). !>
Definition at line 137 of file sgeqlf.f.
subroutine ZGEQLF (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer lwork, integer info)¶
ZGEQLF
Purpose:
!> !> ZGEQLF computes a QL factorization of a complex M-by-N matrix A: !> A = Q * L. !>
Parameters
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, !> if m >= n, the lower triangle of the subarray !> A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; !> if m <= n, the elements on and below the (n-m)-th !> superdiagonal contain the M-by-N lower trapezoidal matrix L; !> the remaining elements, with the array TAU, represent the !> unitary matrix Q as a product of elementary reflectors !> (see Further Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
TAU
!> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N). !> For optimum performance LWORK >= N*NB, where NB is !> the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(k) . . . H(2) H(1), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in !> A(1:m-k+i-1,n-k+i), and tau in TAU(i). !>
Definition at line 137 of file zgeqlf.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |