table of contents
gemqrt(3) | Library Functions Manual | gemqrt(3) |
NAME¶
gemqrt - gemqrt: multiply by Q from geqrt
SYNOPSIS¶
Functions¶
subroutine CGEMQRT (side, trans, m, n, k, nb, v, ldv, t,
ldt, c, ldc, work, info)
CGEMQRT subroutine DGEMQRT (side, trans, m, n, k, nb, v, ldv, t,
ldt, c, ldc, work, info)
DGEMQRT subroutine SGEMQRT (side, trans, m, n, k, nb, v, ldv, t,
ldt, c, ldc, work, info)
SGEMQRT subroutine ZGEMQRT (side, trans, m, n, k, nb, v, ldv, t,
ldt, c, ldc, work, info)
ZGEMQRT
Detailed Description¶
Function Documentation¶
subroutine CGEMQRT (character side, character trans, integer m, integer n, integer k, integer nb, complex, dimension( ldv, * ) v, integer ldv, complex, dimension( ldt, * ) t, integer ldt, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work, integer info)¶
CGEMQRT
Purpose:
!> !> CGEMQRT overwrites the general complex M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q C C Q !> TRANS = 'C': Q**H C C Q**H !> !> where Q is a complex orthogonal matrix defined as the product of K !> elementary reflectors: !> !> Q = H(1) H(2) . . . H(K) = I - V T V**H !> !> generated using the compact WY representation as returned by CGEQRT. !> !> Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate transpose, apply Q**H. !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
NB
!> NB is INTEGER !> The block size used for the storage of T. K >= NB >= 1. !> This must be the same value of NB used to generate T !> in CGEQRT. !>
V
!> V is COMPLEX array, dimension (LDV,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> CGEQRT in the first K columns of its array argument A. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !>
T
!> T is COMPLEX array, dimension (LDT,K) !> The upper triangular factors of the block reflectors !> as returned by CGEQRT, stored as a NB-by-N matrix. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= NB. !>
C
!> C is COMPLEX array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is COMPLEX array. The dimension of WORK is !> N*NB if SIDE = 'L', or M*NB if SIDE = 'R'. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 166 of file cgemqrt.f.
subroutine DGEMQRT (character side, character trans, integer m, integer n, integer k, integer nb, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( ldt, * ) t, integer ldt, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work, integer info)¶
DGEMQRT
Purpose:
!> !> DGEMQRT overwrites the general real M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q C C Q !> TRANS = 'T': Q**T C C Q**T !> !> where Q is a real orthogonal matrix defined as the product of K !> elementary reflectors: !> !> Q = H(1) H(2) . . . H(K) = I - V T V**T !> !> generated using the compact WY representation as returned by DGEQRT. !> !> Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**T from the Left; !> = 'R': apply Q or Q**T from the Right. !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Transpose, apply Q**T. !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
NB
!> NB is INTEGER !> The block size used for the storage of T. K >= NB >= 1. !> This must be the same value of NB used to generate T !> in DGEQRT. !>
V
!> V is DOUBLE PRECISION array, dimension (LDV,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> DGEQRT in the first K columns of its array argument A. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !>
T
!> T is DOUBLE PRECISION array, dimension (LDT,K) !> The upper triangular factors of the block reflectors !> as returned by DGEQRT, stored as a NB-by-N matrix. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= NB. !>
C
!> C is DOUBLE PRECISION array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q C, Q**T C, C Q**T or C Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is DOUBLE PRECISION array. The dimension of !> WORK is N*NB if SIDE = 'L', or M*NB if SIDE = 'R'. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 166 of file dgemqrt.f.
subroutine SGEMQRT (character side, character trans, integer m, integer n, integer k, integer nb, real, dimension( ldv, * ) v, integer ldv, real, dimension( ldt, * ) t, integer ldt, real, dimension( ldc, * ) c, integer ldc, real, dimension( * ) work, integer info)¶
SGEMQRT
Purpose:
!> !> SGEMQRT overwrites the general real M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q C C Q !> TRANS = 'T': Q**T C C Q**T !> !> where Q is a real orthogonal matrix defined as the product of K !> elementary reflectors: !> !> Q = H(1) H(2) . . . H(K) = I - V T V**T !> !> generated using the compact WY representation as returned by SGEQRT. !> !> Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**T from the Left; !> = 'R': apply Q or Q**T from the Right. !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'T': Transpose, apply Q**T. !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
NB
!> NB is INTEGER !> The block size used for the storage of T. K >= NB >= 1. !> This must be the same value of NB used to generate T !> in SGEQRT. !>
V
!> V is REAL array, dimension (LDV,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> SGEQRT in the first K columns of its array argument A. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !>
T
!> T is REAL array, dimension (LDT,K) !> The upper triangular factors of the block reflectors !> as returned by SGEQRT, stored as a NB-by-N matrix. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= NB. !>
C
!> C is REAL array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q C, Q**T C, C Q**T or C Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is REAL array. The dimension of WORK is !> N*NB if SIDE = 'L', or M*NB if SIDE = 'R'. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 166 of file sgemqrt.f.
subroutine ZGEMQRT (character side, character trans, integer m, integer n, integer k, integer nb, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer info)¶
ZGEMQRT
Purpose:
!> !> ZGEMQRT overwrites the general complex M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q C C Q !> TRANS = 'C': Q**H C C Q**H !> !> where Q is a complex orthogonal matrix defined as the product of K !> elementary reflectors: !> !> Q = H(1) H(2) . . . H(K) = I - V T V**H !> !> generated using the compact WY representation as returned by ZGEQRT. !> !> Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate transpose, apply Q**H. !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
NB
!> NB is INTEGER !> The block size used for the storage of T. K >= NB >= 1. !> This must be the same value of NB used to generate T !> in ZGEQRT. !>
V
!> V is COMPLEX*16 array, dimension (LDV,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGEQRT in the first K columns of its array argument A. !>
LDV
!> LDV is INTEGER !> The leading dimension of the array V. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !>
T
!> T is COMPLEX*16 array, dimension (LDT,K) !> The upper triangular factors of the block reflectors !> as returned by ZGEQRT, stored as a NB-by-N matrix. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= NB. !>
C
!> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is COMPLEX*16 array. The dimension of WORK is !> N*NB if SIDE = 'L', or M*NB if SIDE = 'R'. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 166 of file zgemqrt.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |