table of contents
gehd2(3) | Library Functions Manual | gehd2(3) |
NAME¶
gehd2 - gehd2: reduction to Hessenberg, level 2
SYNOPSIS¶
Functions¶
subroutine CGEHD2 (n, ilo, ihi, a, lda, tau, work, info)
CGEHD2 reduces a general square matrix to upper Hessenberg form using
an unblocked algorithm. subroutine DGEHD2 (n, ilo, ihi, a, lda, tau,
work, info)
DGEHD2 reduces a general square matrix to upper Hessenberg form using
an unblocked algorithm. subroutine SGEHD2 (n, ilo, ihi, a, lda, tau,
work, info)
SGEHD2 reduces a general square matrix to upper Hessenberg form using
an unblocked algorithm. subroutine ZGEHD2 (n, ilo, ihi, a, lda, tau,
work, info)
ZGEHD2 reduces a general square matrix to upper Hessenberg form using
an unblocked algorithm.
Detailed Description¶
Function Documentation¶
subroutine CGEHD2 (integer n, integer ilo, integer ihi, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info)¶
CGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
Purpose:
!> !> CGEHD2 reduces a complex general matrix A to upper Hessenberg form H !> by a unitary similarity transformation: Q**H * A * Q = H . !>
Parameters
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
ILO
!> ILO is INTEGER !>
IHI
!> IHI is INTEGER !> !> It is assumed that A is already upper triangular in rows !> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally !> set by a previous call to CGEBAL; otherwise they should be !> set to 1 and N respectively. See Further Details. !> 1 <= ILO <= IHI <= max(1,N). !>
A
!> A is COMPLEX array, dimension (LDA,N) !> On entry, the n by n general matrix to be reduced. !> On exit, the upper triangle and the first subdiagonal of A !> are overwritten with the upper Hessenberg matrix H, and the !> elements below the first subdiagonal, with the array TAU, !> represent the unitary matrix Q as a product of elementary !> reflectors. See Further Details. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
TAU
!> TAU is COMPLEX array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is COMPLEX array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of (ihi-ilo) elementary !> reflectors !> !> Q = H(ilo) H(ilo+1) . . . H(ihi-1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on !> exit in A(i+2:ihi,i), and tau in TAU(i). !> !> The contents of A are illustrated by the following example, with !> n = 7, ilo = 2 and ihi = 6: !> !> on entry, on exit, !> !> ( a a a a a a a ) ( a a h h h h a ) !> ( a a a a a a ) ( a h h h h a ) !> ( a a a a a a ) ( h h h h h h ) !> ( a a a a a a ) ( v2 h h h h h ) !> ( a a a a a a ) ( v2 v3 h h h h ) !> ( a a a a a a ) ( v2 v3 v4 h h h ) !> ( a ) ( a ) !> !> where a denotes an element of the original matrix A, h denotes a !> modified element of the upper Hessenberg matrix H, and vi denotes an !> element of the vector defining H(i). !>
Definition at line 148 of file cgehd2.f.
subroutine DGEHD2 (integer n, integer ilo, integer ihi, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info)¶
DGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
Purpose:
!> !> DGEHD2 reduces a real general matrix A to upper Hessenberg form H by !> an orthogonal similarity transformation: Q**T * A * Q = H . !>
Parameters
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
ILO
!> ILO is INTEGER !>
IHI
!> IHI is INTEGER !> !> It is assumed that A is already upper triangular in rows !> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally !> set by a previous call to DGEBAL; otherwise they should be !> set to 1 and N respectively. See Further Details. !> 1 <= ILO <= IHI <= max(1,N). !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the n by n general matrix to be reduced. !> On exit, the upper triangle and the first subdiagonal of A !> are overwritten with the upper Hessenberg matrix H, and the !> elements below the first subdiagonal, with the array TAU, !> represent the orthogonal matrix Q as a product of elementary !> reflectors. See Further Details. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of (ihi-ilo) elementary !> reflectors !> !> Q = H(ilo) H(ilo+1) . . . H(ihi-1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on !> exit in A(i+2:ihi,i), and tau in TAU(i). !> !> The contents of A are illustrated by the following example, with !> n = 7, ilo = 2 and ihi = 6: !> !> on entry, on exit, !> !> ( a a a a a a a ) ( a a h h h h a ) !> ( a a a a a a ) ( a h h h h a ) !> ( a a a a a a ) ( h h h h h h ) !> ( a a a a a a ) ( v2 h h h h h ) !> ( a a a a a a ) ( v2 v3 h h h h ) !> ( a a a a a a ) ( v2 v3 v4 h h h ) !> ( a ) ( a ) !> !> where a denotes an element of the original matrix A, h denotes a !> modified element of the upper Hessenberg matrix H, and vi denotes an !> element of the vector defining H(i). !>
Definition at line 148 of file dgehd2.f.
subroutine SGEHD2 (integer n, integer ilo, integer ihi, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info)¶
SGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
Purpose:
!> !> SGEHD2 reduces a real general matrix A to upper Hessenberg form H by !> an orthogonal similarity transformation: Q**T * A * Q = H . !>
Parameters
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
ILO
!> ILO is INTEGER !>
IHI
!> IHI is INTEGER !> !> It is assumed that A is already upper triangular in rows !> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally !> set by a previous call to SGEBAL; otherwise they should be !> set to 1 and N respectively. See Further Details. !> 1 <= ILO <= IHI <= max(1,N). !>
A
!> A is REAL array, dimension (LDA,N) !> On entry, the n by n general matrix to be reduced. !> On exit, the upper triangle and the first subdiagonal of A !> are overwritten with the upper Hessenberg matrix H, and the !> elements below the first subdiagonal, with the array TAU, !> represent the orthogonal matrix Q as a product of elementary !> reflectors. See Further Details. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
TAU
!> TAU is REAL array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is REAL array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of (ihi-ilo) elementary !> reflectors !> !> Q = H(ilo) H(ilo+1) . . . H(ihi-1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on !> exit in A(i+2:ihi,i), and tau in TAU(i). !> !> The contents of A are illustrated by the following example, with !> n = 7, ilo = 2 and ihi = 6: !> !> on entry, on exit, !> !> ( a a a a a a a ) ( a a h h h h a ) !> ( a a a a a a ) ( a h h h h a ) !> ( a a a a a a ) ( h h h h h h ) !> ( a a a a a a ) ( v2 h h h h h ) !> ( a a a a a a ) ( v2 v3 h h h h ) !> ( a a a a a a ) ( v2 v3 v4 h h h ) !> ( a ) ( a ) !> !> where a denotes an element of the original matrix A, h denotes a !> modified element of the upper Hessenberg matrix H, and vi denotes an !> element of the vector defining H(i). !>
Definition at line 148 of file sgehd2.f.
subroutine ZGEHD2 (integer n, integer ilo, integer ihi, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)¶
ZGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
Purpose:
!> !> ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H !> by a unitary similarity transformation: Q**H * A * Q = H . !>
Parameters
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
ILO
!> ILO is INTEGER !>
IHI
!> IHI is INTEGER !> !> It is assumed that A is already upper triangular in rows !> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally !> set by a previous call to ZGEBAL; otherwise they should be !> set to 1 and N respectively. See Further Details. !> 1 <= ILO <= IHI <= max(1,N). !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the n by n general matrix to be reduced. !> On exit, the upper triangle and the first subdiagonal of A !> are overwritten with the upper Hessenberg matrix H, and the !> elements below the first subdiagonal, with the array TAU, !> represent the unitary matrix Q as a product of elementary !> reflectors. See Further Details. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
TAU
!> TAU is COMPLEX*16 array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
WORK
!> WORK is COMPLEX*16 array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of (ihi-ilo) elementary !> reflectors !> !> Q = H(ilo) H(ilo+1) . . . H(ihi-1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on !> exit in A(i+2:ihi,i), and tau in TAU(i). !> !> The contents of A are illustrated by the following example, with !> n = 7, ilo = 2 and ihi = 6: !> !> on entry, on exit, !> !> ( a a a a a a a ) ( a a h h h h a ) !> ( a a a a a a ) ( a h h h h a ) !> ( a a a a a a ) ( h h h h h h ) !> ( a a a a a a ) ( v2 h h h h h ) !> ( a a a a a a ) ( v2 v3 h h h h ) !> ( a a a a a a ) ( v2 v3 v4 h h h ) !> ( a ) ( a ) !> !> where a denotes an element of the original matrix A, h denotes a !> modified element of the upper Hessenberg matrix H, and vi denotes an !> element of the vector defining H(i). !>
Definition at line 148 of file zgehd2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |