table of contents
gbrfsx(3) | Library Functions Manual | gbrfsx(3) |
NAME¶
gbrfsx - gbrfsx: iterative refinement, expert
SYNOPSIS¶
Functions¶
subroutine CGBRFSX (trans, equed, n, kl, ku, nrhs, ab,
ldab, afb, ldafb, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds,
err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CGBRFSX subroutine DGBRFSX (trans, equed, n, kl, ku, nrhs, ab,
ldab, afb, ldafb, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds,
err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
DGBRFSX subroutine SGBRFSX (trans, equed, n, kl, ku, nrhs, ab,
ldab, afb, ldafb, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds,
err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
SGBRFSX subroutine ZGBRFSX (trans, equed, n, kl, ku, nrhs, ab,
ldab, afb, ldafb, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds,
err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZGBRFSX
Detailed Description¶
Function Documentation¶
subroutine CGBRFSX (character trans, character equed, integer n, integer kl, integer ku, integer nrhs, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldafb, * ) afb, integer ldafb, integer, dimension( * ) ipiv, real, dimension( * ) r, real, dimension( * ) c, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx , * ) x, integer ldx, real rcond, real, dimension( * ) berr, integer n_err_bnds, real, dimension( nrhs, * ) err_bnds_norm, real, dimension( nrhs, * ) err_bnds_comp, integer nparams, real, dimension( * ) params, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)¶
CGBRFSX
Purpose:
!> !> CGBRFSX improves the computed solution to a system of linear !> equations and provides error bounds and backward error estimates !> for the solution. In addition to normwise error bound, the code !> provides maximum componentwise error bound if possible. See !> comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the !> error bounds. !> !> The original system of linear equations may have been equilibrated !> before calling this routine, as described by arguments EQUED, R !> and C below. In this case, the solution and error bounds returned !> are for the original unequilibrated system. !>
!> Some optional parameters are bundled in the PARAMS array. These !> settings determine how refinement is performed, but often the !> defaults are acceptable. If the defaults are acceptable, users !> can pass NPARAMS = 0 which prevents the source code from accessing !> the PARAMS argument. !>
Parameters
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !>
EQUED
!> EQUED is CHARACTER*1 !> Specifies the form of equilibration that was done to A !> before calling this routine. This is needed to compute !> the solution and error bounds correctly. !> = 'N': No equilibration !> = 'R': Row equilibration, i.e., A has been premultiplied by !> diag(R). !> = 'C': Column equilibration, i.e., A has been postmultiplied !> by diag(C). !> = 'B': Both row and column equilibration, i.e., A has been !> replaced by diag(R) * A * diag(C). !> The right hand side B has been changed accordingly. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KL
!> KL is INTEGER !> The number of subdiagonals within the band of A. KL >= 0. !>
KU
!> KU is INTEGER !> The number of superdiagonals within the band of A. KU >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !>
AB
!> AB is COMPLEX array, dimension (LDAB,N) !> The original band matrix A, stored in rows 1 to KL+KU+1. !> The j-th column of A is stored in the j-th column of the !> array AB as follows: !> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KL+KU+1. !>
AFB
!> AFB is COMPLEX array, dimension (LDAFB,N) !> Details of the LU factorization of the band matrix A, as !> computed by CGBTRF. U is stored as an upper triangular band !> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and !> the multipliers used during the factorization are stored in !> rows KL+KU+2 to 2*KL+KU+1. !>
LDAFB
!> LDAFB is INTEGER !> The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices from CGETRF; for 1<=i<=N, row i of the !> matrix was interchanged with row IPIV(i). !>
R
!> R is REAL array, dimension (N) !> The row scale factors for A. If EQUED = 'R' or 'B', A is !> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R !> is not accessed. R is an input argument if FACT = 'F'; !> otherwise, R is an output argument. If FACT = 'F' and !> EQUED = 'R' or 'B', each element of R must be positive. !> If R is output, each element of R is a power of the radix. !> If R is input, each element of R should be a power of the radix !> to ensure a reliable solution and error estimates. Scaling by !> powers of the radix does not cause rounding errors unless the !> result underflows or overflows. Rounding errors during scaling !> lead to refining with a matrix that is not equivalent to the !> input matrix, producing error estimates that may not be !> reliable. !>
C
!> C is REAL array, dimension (N) !> The column scale factors for A. If EQUED = 'C' or 'B', A is !> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C !> is not accessed. C is an input argument if FACT = 'F'; !> otherwise, C is an output argument. If FACT = 'F' and !> EQUED = 'C' or 'B', each element of C must be positive. !> If C is output, each element of C is a power of the radix. !> If C is input, each element of C should be a power of the radix !> to ensure a reliable solution and error estimates. Scaling by !> powers of the radix does not cause rounding errors unless the !> result underflows or overflows. Rounding errors during scaling !> lead to refining with a matrix that is not equivalent to the !> input matrix, producing error estimates that may not be !> reliable. !>
B
!> B is COMPLEX array, dimension (LDB,NRHS) !> The right hand side matrix B. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
X
!> X is COMPLEX array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by CGETRS. !> On exit, the improved solution matrix X. !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
RCOND
!> RCOND is REAL !> Reciprocal scaled condition number. This is an estimate of the !> reciprocal Skeel condition number of the matrix A after !> equilibration (if done). If this is less than the machine !> precision (in particular, if it is zero), the matrix is singular !> to working precision. Note that the error may still be small even !> if this number is very small and the matrix appears ill- !> conditioned. !>
BERR
!> BERR is REAL array, dimension (NRHS) !> Componentwise relative backward error. This is the !> componentwise relative backward error of each solution vector X(j) !> (i.e., the smallest relative change in any element of A or B that !> makes X(j) an exact solution). !>
N_ERR_BNDS
!> N_ERR_BNDS is INTEGER !> Number of error bounds to return for each right hand side !> and each type (normwise or componentwise). See ERR_BNDS_NORM and !> ERR_BNDS_COMP below. !>
ERR_BNDS_NORM
!> ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS) !> For each right-hand side, this array contains information about !> various error bounds and condition numbers corresponding to the !> normwise relative error, which is defined as follows: !> !> Normwise relative error in the ith solution vector: !> max_j (abs(XTRUE(j,i) - X(j,i))) !> ------------------------------ !> max_j abs(X(j,i)) !> !> The array is indexed by the type of error information as described !> below. There currently are up to three pieces of information !> returned. !> !> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith !> right-hand side. !> !> The second index in ERR_BNDS_NORM(:,err) contains the following !> three fields: !> err = 1 boolean. Trust the answer if the !> reciprocal condition number is less than the threshold !> sqrt(n) * slamch('Epsilon'). !> !> err = 2 error bound: The estimated forward error, !> almost certainly within a factor of 10 of the true error !> so long as the next entry is greater than the threshold !> sqrt(n) * slamch('Epsilon'). This error bound should only !> be trusted if the previous boolean is true. !> !> err = 3 Reciprocal condition number: Estimated normwise !> reciprocal condition number. Compared with the threshold !> sqrt(n) * slamch('Epsilon') to determine if the error !> estimate is . These reciprocal condition !> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some !> appropriately scaled matrix Z. !> Let Z = S*A, where S scales each row by a power of the !> radix so all absolute row sums of Z are approximately 1. !> !> See Lapack Working Note 165 for further details and extra !> cautions. !>
ERR_BNDS_COMP
!> ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS) !> For each right-hand side, this array contains information about !> various error bounds and condition numbers corresponding to the !> componentwise relative error, which is defined as follows: !> !> Componentwise relative error in the ith solution vector: !> abs(XTRUE(j,i) - X(j,i)) !> max_j ---------------------- !> abs(X(j,i)) !> !> The array is indexed by the right-hand side i (on which the !> componentwise relative error depends), and the type of error !> information as described below. There currently are up to three !> pieces of information returned for each right-hand side. If !> componentwise accuracy is not requested (PARAMS(3) = 0.0), then !> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most !> the first (:,N_ERR_BNDS) entries are returned. !> !> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith !> right-hand side. !> !> The second index in ERR_BNDS_COMP(:,err) contains the following !> three fields: !> err = 1 boolean. Trust the answer if the !> reciprocal condition number is less than the threshold !> sqrt(n) * slamch('Epsilon'). !> !> err = 2 error bound: The estimated forward error, !> almost certainly within a factor of 10 of the true error !> so long as the next entry is greater than the threshold !> sqrt(n) * slamch('Epsilon'). This error bound should only !> be trusted if the previous boolean is true. !> !> err = 3 Reciprocal condition number: Estimated componentwise !> reciprocal condition number. Compared with the threshold !> sqrt(n) * slamch('Epsilon') to determine if the error !> estimate is . These reciprocal condition !> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some !> appropriately scaled matrix Z. !> Let Z = S*(A*diag(x)), where x is the solution for the !> current right-hand side and S scales each row of !> A*diag(x) by a power of the radix so all absolute row !> sums of Z are approximately 1. !> !> See Lapack Working Note 165 for further details and extra !> cautions. !>
NPARAMS
!> NPARAMS is INTEGER !> Specifies the number of parameters set in PARAMS. If <= 0, the !> PARAMS array is never referenced and default values are used. !>
PARAMS
!> PARAMS is REAL array, dimension NPARAMS !> Specifies algorithm parameters. If an entry is < 0.0, then !> that entry will be filled with default value used for that !> parameter. Only positions up to NPARAMS are accessed; defaults !> are used for higher-numbered parameters. !> !> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative !> refinement or not. !> Default: 1.0 !> = 0.0: No refinement is performed, and no error bounds are !> computed. !> = 1.0: Use the double-precision refinement algorithm, !> possibly with doubled-single computations if the !> compilation environment does not support DOUBLE !> PRECISION. !> (other values are reserved for future use) !> !> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual !> computations allowed for refinement. !> Default: 10 !> Aggressive: Set to 100 to permit convergence using approximate !> factorizations or factorizations other than LU. If !> the factorization uses a technique other than !> Gaussian elimination, the guarantees in !> err_bnds_norm and err_bnds_comp may no longer be !> trustworthy. !> !> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code !> will attempt to find a solution with small componentwise !> relative error in the double-precision algorithm. Positive !> is true, 0.0 is false. !> Default: 1.0 (attempt componentwise convergence) !>
WORK
!> WORK is COMPLEX array, dimension (2*N) !>
RWORK
!> RWORK is REAL array, dimension (2*N) !>
INFO
!> INFO is INTEGER !> = 0: Successful exit. The solution to every right-hand side is !> guaranteed. !> < 0: If INFO = -i, the i-th argument had an illegal value !> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization !> has been completed, but the factor U is exactly singular, so !> the solution and error bounds could not be computed. RCOND = 0 !> is returned. !> = N+J: The solution corresponding to the Jth right-hand side is !> not guaranteed. The solutions corresponding to other right- !> hand sides K with K > J may not be guaranteed as well, but !> only the first such right-hand side is reported. If a small !> componentwise error is not requested (PARAMS(3) = 0.0) then !> the Jth right-hand side is the first with a normwise error !> bound that is not guaranteed (the smallest J such !> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) !> the Jth right-hand side is the first with either a normwise or !> componentwise error bound that is not guaranteed (the smallest !> J such that either ERR_BNDS_NORM(J,1) = 0.0 or !> ERR_BNDS_COMP(J,1) = 0.0). See the definition of !> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information !> about all of the right-hand sides check ERR_BNDS_NORM or !> ERR_BNDS_COMP. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 435 of file cgbrfsx.f.
subroutine DGBRFSX (character trans, character equed, integer n, integer kl, integer ku, integer nrhs, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldafb, * ) afb, integer ldafb, integer, dimension( * ) ipiv, double precision, dimension( * ) r, double precision, dimension( * ) c, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx , * ) x, integer ldx, double precision rcond, double precision, dimension( * ) berr, integer n_err_bnds, double precision, dimension( nrhs, * ) err_bnds_norm, double precision, dimension( nrhs, * ) err_bnds_comp, integer nparams, double precision, dimension( * ) params, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)¶
DGBRFSX
Purpose:
!> !> DGBRFSX improves the computed solution to a system of linear !> equations and provides error bounds and backward error estimates !> for the solution. In addition to normwise error bound, the code !> provides maximum componentwise error bound if possible. See !> comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the !> error bounds. !> !> The original system of linear equations may have been equilibrated !> before calling this routine, as described by arguments EQUED, R !> and C below. In this case, the solution and error bounds returned !> are for the original unequilibrated system. !>
!> Some optional parameters are bundled in the PARAMS array. These !> settings determine how refinement is performed, but often the !> defaults are acceptable. If the defaults are acceptable, users !> can pass NPARAMS = 0 which prevents the source code from accessing !> the PARAMS argument. !>
Parameters
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose = Transpose) !>
EQUED
!> EQUED is CHARACTER*1 !> Specifies the form of equilibration that was done to A !> before calling this routine. This is needed to compute !> the solution and error bounds correctly. !> = 'N': No equilibration !> = 'R': Row equilibration, i.e., A has been premultiplied by !> diag(R). !> = 'C': Column equilibration, i.e., A has been postmultiplied !> by diag(C). !> = 'B': Both row and column equilibration, i.e., A has been !> replaced by diag(R) * A * diag(C). !> The right hand side B has been changed accordingly. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KL
!> KL is INTEGER !> The number of subdiagonals within the band of A. KL >= 0. !>
KU
!> KU is INTEGER !> The number of superdiagonals within the band of A. KU >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !>
AB
!> AB is DOUBLE PRECISION array, dimension (LDAB,N) !> The original band matrix A, stored in rows 1 to KL+KU+1. !> The j-th column of A is stored in the j-th column of the !> array AB as follows: !> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KL+KU+1. !>
AFB
!> AFB is DOUBLE PRECISION array, dimension (LDAFB,N) !> Details of the LU factorization of the band matrix A, as !> computed by DGBTRF. U is stored as an upper triangular band !> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and !> the multipliers used during the factorization are stored in !> rows KL+KU+2 to 2*KL+KU+1. !>
LDAFB
!> LDAFB is INTEGER !> The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices from DGETRF; for 1<=i<=N, row i of the !> matrix was interchanged with row IPIV(i). !>
R
!> R is DOUBLE PRECISION array, dimension (N) !> The row scale factors for A. If EQUED = 'R' or 'B', A is !> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R !> is not accessed. R is an input argument if FACT = 'F'; !> otherwise, R is an output argument. If FACT = 'F' and !> EQUED = 'R' or 'B', each element of R must be positive. !> If R is output, each element of R is a power of the radix. !> If R is input, each element of R should be a power of the radix !> to ensure a reliable solution and error estimates. Scaling by !> powers of the radix does not cause rounding errors unless the !> result underflows or overflows. Rounding errors during scaling !> lead to refining with a matrix that is not equivalent to the !> input matrix, producing error estimates that may not be !> reliable. !>
C
!> C is DOUBLE PRECISION array, dimension (N) !> The column scale factors for A. If EQUED = 'C' or 'B', A is !> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C !> is not accessed. C is an input argument if FACT = 'F'; !> otherwise, C is an output argument. If FACT = 'F' and !> EQUED = 'C' or 'B', each element of C must be positive. !> If C is output, each element of C is a power of the radix. !> If C is input, each element of C should be a power of the radix !> to ensure a reliable solution and error estimates. Scaling by !> powers of the radix does not cause rounding errors unless the !> result underflows or overflows. Rounding errors during scaling !> lead to refining with a matrix that is not equivalent to the !> input matrix, producing error estimates that may not be !> reliable. !>
B
!> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> The right hand side matrix B. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
X
!> X is DOUBLE PRECISION array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by DGETRS. !> On exit, the improved solution matrix X. !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
RCOND
!> RCOND is DOUBLE PRECISION !> Reciprocal scaled condition number. This is an estimate of the !> reciprocal Skeel condition number of the matrix A after !> equilibration (if done). If this is less than the machine !> precision (in particular, if it is zero), the matrix is singular !> to working precision. Note that the error may still be small even !> if this number is very small and the matrix appears ill- !> conditioned. !>
BERR
!> BERR is DOUBLE PRECISION array, dimension (NRHS) !> Componentwise relative backward error. This is the !> componentwise relative backward error of each solution vector X(j) !> (i.e., the smallest relative change in any element of A or B that !> makes X(j) an exact solution). !>
N_ERR_BNDS
!> N_ERR_BNDS is INTEGER !> Number of error bounds to return for each right hand side !> and each type (normwise or componentwise). See ERR_BNDS_NORM and !> ERR_BNDS_COMP below. !>
ERR_BNDS_NORM
!> ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) !> For each right-hand side, this array contains information about !> various error bounds and condition numbers corresponding to the !> normwise relative error, which is defined as follows: !> !> Normwise relative error in the ith solution vector: !> max_j (abs(XTRUE(j,i) - X(j,i))) !> ------------------------------ !> max_j abs(X(j,i)) !> !> The array is indexed by the type of error information as described !> below. There currently are up to three pieces of information !> returned. !> !> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith !> right-hand side. !> !> The second index in ERR_BNDS_NORM(:,err) contains the following !> three fields: !> err = 1 boolean. Trust the answer if the !> reciprocal condition number is less than the threshold !> sqrt(n) * dlamch('Epsilon'). !> !> err = 2 error bound: The estimated forward error, !> almost certainly within a factor of 10 of the true error !> so long as the next entry is greater than the threshold !> sqrt(n) * dlamch('Epsilon'). This error bound should only !> be trusted if the previous boolean is true. !> !> err = 3 Reciprocal condition number: Estimated normwise !> reciprocal condition number. Compared with the threshold !> sqrt(n) * dlamch('Epsilon') to determine if the error !> estimate is . These reciprocal condition !> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some !> appropriately scaled matrix Z. !> Let Z = S*A, where S scales each row by a power of the !> radix so all absolute row sums of Z are approximately 1. !> !> See Lapack Working Note 165 for further details and extra !> cautions. !>
ERR_BNDS_COMP
!> ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) !> For each right-hand side, this array contains information about !> various error bounds and condition numbers corresponding to the !> componentwise relative error, which is defined as follows: !> !> Componentwise relative error in the ith solution vector: !> abs(XTRUE(j,i) - X(j,i)) !> max_j ---------------------- !> abs(X(j,i)) !> !> The array is indexed by the right-hand side i (on which the !> componentwise relative error depends), and the type of error !> information as described below. There currently are up to three !> pieces of information returned for each right-hand side. If !> componentwise accuracy is not requested (PARAMS(3) = 0.0), then !> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most !> the first (:,N_ERR_BNDS) entries are returned. !> !> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith !> right-hand side. !> !> The second index in ERR_BNDS_COMP(:,err) contains the following !> three fields: !> err = 1 boolean. Trust the answer if the !> reciprocal condition number is less than the threshold !> sqrt(n) * dlamch('Epsilon'). !> !> err = 2 error bound: The estimated forward error, !> almost certainly within a factor of 10 of the true error !> so long as the next entry is greater than the threshold !> sqrt(n) * dlamch('Epsilon'). This error bound should only !> be trusted if the previous boolean is true. !> !> err = 3 Reciprocal condition number: Estimated componentwise !> reciprocal condition number. Compared with the threshold !> sqrt(n) * dlamch('Epsilon') to determine if the error !> estimate is . These reciprocal condition !> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some !> appropriately scaled matrix Z. !> Let Z = S*(A*diag(x)), where x is the solution for the !> current right-hand side and S scales each row of !> A*diag(x) by a power of the radix so all absolute row !> sums of Z are approximately 1. !> !> See Lapack Working Note 165 for further details and extra !> cautions. !>
NPARAMS
!> NPARAMS is INTEGER !> Specifies the number of parameters set in PARAMS. If <= 0, the !> PARAMS array is never referenced and default values are used. !>
PARAMS
!> PARAMS is DOUBLE PRECISION array, dimension (NPARAMS) !> Specifies algorithm parameters. If an entry is < 0.0, then !> that entry will be filled with default value used for that !> parameter. Only positions up to NPARAMS are accessed; defaults !> are used for higher-numbered parameters. !> !> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative !> refinement or not. !> Default: 1.0D+0 !> = 0.0: No refinement is performed, and no error bounds are !> computed. !> = 1.0: Use the double-precision refinement algorithm, !> possibly with doubled-single computations if the !> compilation environment does not support DOUBLE !> PRECISION. !> (other values are reserved for future use) !> !> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual !> computations allowed for refinement. !> Default: 10 !> Aggressive: Set to 100 to permit convergence using approximate !> factorizations or factorizations other than LU. If !> the factorization uses a technique other than !> Gaussian elimination, the guarantees in !> err_bnds_norm and err_bnds_comp may no longer be !> trustworthy. !> !> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code !> will attempt to find a solution with small componentwise !> relative error in the double-precision algorithm. Positive !> is true, 0.0 is false. !> Default: 1.0 (attempt componentwise convergence) !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (4*N) !>
IWORK
!> IWORK is INTEGER array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: Successful exit. The solution to every right-hand side is !> guaranteed. !> < 0: If INFO = -i, the i-th argument had an illegal value !> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization !> has been completed, but the factor U is exactly singular, so !> the solution and error bounds could not be computed. RCOND = 0 !> is returned. !> = N+J: The solution corresponding to the Jth right-hand side is !> not guaranteed. The solutions corresponding to other right- !> hand sides K with K > J may not be guaranteed as well, but !> only the first such right-hand side is reported. If a small !> componentwise error is not requested (PARAMS(3) = 0.0) then !> the Jth right-hand side is the first with a normwise error !> bound that is not guaranteed (the smallest J such !> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) !> the Jth right-hand side is the first with either a normwise or !> componentwise error bound that is not guaranteed (the smallest !> J such that either ERR_BNDS_NORM(J,1) = 0.0 or !> ERR_BNDS_COMP(J,1) = 0.0). See the definition of !> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information !> about all of the right-hand sides check ERR_BNDS_NORM or !> ERR_BNDS_COMP. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 435 of file dgbrfsx.f.
subroutine SGBRFSX (character trans, character equed, integer n, integer kl, integer ku, integer nrhs, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldafb, * ) afb, integer ldafb, integer, dimension( * ) ipiv, real, dimension( * ) r, real, dimension( * ) c, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx , * ) x, integer ldx, real rcond, real, dimension( * ) berr, integer n_err_bnds, real, dimension( nrhs, * ) err_bnds_norm, real, dimension( nrhs, * ) err_bnds_comp, integer nparams, real, dimension( * ) params, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)¶
SGBRFSX
Purpose:
!> !> SGBRFSX improves the computed solution to a system of linear !> equations and provides error bounds and backward error estimates !> for the solution. In addition to normwise error bound, the code !> provides maximum componentwise error bound if possible. See !> comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the !> error bounds. !> !> The original system of linear equations may have been equilibrated !> before calling this routine, as described by arguments EQUED, R !> and C below. In this case, the solution and error bounds returned !> are for the original unequilibrated system. !>
!> Some optional parameters are bundled in the PARAMS array. These !> settings determine how refinement is performed, but often the !> defaults are acceptable. If the defaults are acceptable, users !> can pass NPARAMS = 0 which prevents the source code from accessing !> the PARAMS argument. !>
Parameters
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose = Transpose) !>
EQUED
!> EQUED is CHARACTER*1 !> Specifies the form of equilibration that was done to A !> before calling this routine. This is needed to compute !> the solution and error bounds correctly. !> = 'N': No equilibration !> = 'R': Row equilibration, i.e., A has been premultiplied by !> diag(R). !> = 'C': Column equilibration, i.e., A has been postmultiplied !> by diag(C). !> = 'B': Both row and column equilibration, i.e., A has been !> replaced by diag(R) * A * diag(C). !> The right hand side B has been changed accordingly. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KL
!> KL is INTEGER !> The number of subdiagonals within the band of A. KL >= 0. !>
KU
!> KU is INTEGER !> The number of superdiagonals within the band of A. KU >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !>
AB
!> AB is REAL array, dimension (LDAB,N) !> The original band matrix A, stored in rows 1 to KL+KU+1. !> The j-th column of A is stored in the j-th column of the !> array AB as follows: !> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KL+KU+1. !>
AFB
!> AFB is REAL array, dimension (LDAFB,N) !> Details of the LU factorization of the band matrix A, as !> computed by SGBTRF. U is stored as an upper triangular band !> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and !> the multipliers used during the factorization are stored in !> rows KL+KU+2 to 2*KL+KU+1. !>
LDAFB
!> LDAFB is INTEGER !> The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices from SGETRF; for 1<=i<=N, row i of the !> matrix was interchanged with row IPIV(i). !>
R
!> R is REAL array, dimension (N) !> The row scale factors for A. If EQUED = 'R' or 'B', A is !> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R !> is not accessed. R is an input argument if FACT = 'F'; !> otherwise, R is an output argument. If FACT = 'F' and !> EQUED = 'R' or 'B', each element of R must be positive. !> If R is output, each element of R is a power of the radix. !> If R is input, each element of R should be a power of the radix !> to ensure a reliable solution and error estimates. Scaling by !> powers of the radix does not cause rounding errors unless the !> result underflows or overflows. Rounding errors during scaling !> lead to refining with a matrix that is not equivalent to the !> input matrix, producing error estimates that may not be !> reliable. !>
C
!> C is REAL array, dimension (N) !> The column scale factors for A. If EQUED = 'C' or 'B', A is !> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C !> is not accessed. C is an input argument if FACT = 'F'; !> otherwise, C is an output argument. If FACT = 'F' and !> EQUED = 'C' or 'B', each element of C must be positive. !> If C is output, each element of C is a power of the radix. !> If C is input, each element of C should be a power of the radix !> to ensure a reliable solution and error estimates. Scaling by !> powers of the radix does not cause rounding errors unless the !> result underflows or overflows. Rounding errors during scaling !> lead to refining with a matrix that is not equivalent to the !> input matrix, producing error estimates that may not be !> reliable. !>
B
!> B is REAL array, dimension (LDB,NRHS) !> The right hand side matrix B. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
X
!> X is REAL array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by SGETRS. !> On exit, the improved solution matrix X. !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
RCOND
!> RCOND is REAL !> Reciprocal scaled condition number. This is an estimate of the !> reciprocal Skeel condition number of the matrix A after !> equilibration (if done). If this is less than the machine !> precision (in particular, if it is zero), the matrix is singular !> to working precision. Note that the error may still be small even !> if this number is very small and the matrix appears ill- !> conditioned. !>
BERR
!> BERR is REAL array, dimension (NRHS) !> Componentwise relative backward error. This is the !> componentwise relative backward error of each solution vector X(j) !> (i.e., the smallest relative change in any element of A or B that !> makes X(j) an exact solution). !>
N_ERR_BNDS
!> N_ERR_BNDS is INTEGER !> Number of error bounds to return for each right hand side !> and each type (normwise or componentwise). See ERR_BNDS_NORM and !> ERR_BNDS_COMP below. !>
ERR_BNDS_NORM
!> ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS) !> For each right-hand side, this array contains information about !> various error bounds and condition numbers corresponding to the !> normwise relative error, which is defined as follows: !> !> Normwise relative error in the ith solution vector: !> max_j (abs(XTRUE(j,i) - X(j,i))) !> ------------------------------ !> max_j abs(X(j,i)) !> !> The array is indexed by the type of error information as described !> below. There currently are up to three pieces of information !> returned. !> !> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith !> right-hand side. !> !> The second index in ERR_BNDS_NORM(:,err) contains the following !> three fields: !> err = 1 boolean. Trust the answer if the !> reciprocal condition number is less than the threshold !> sqrt(n) * slamch('Epsilon'). !> !> err = 2 error bound: The estimated forward error, !> almost certainly within a factor of 10 of the true error !> so long as the next entry is greater than the threshold !> sqrt(n) * slamch('Epsilon'). This error bound should only !> be trusted if the previous boolean is true. !> !> err = 3 Reciprocal condition number: Estimated normwise !> reciprocal condition number. Compared with the threshold !> sqrt(n) * slamch('Epsilon') to determine if the error !> estimate is . These reciprocal condition !> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some !> appropriately scaled matrix Z. !> Let Z = S*A, where S scales each row by a power of the !> radix so all absolute row sums of Z are approximately 1. !> !> See Lapack Working Note 165 for further details and extra !> cautions. !>
ERR_BNDS_COMP
!> ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS) !> For each right-hand side, this array contains information about !> various error bounds and condition numbers corresponding to the !> componentwise relative error, which is defined as follows: !> !> Componentwise relative error in the ith solution vector: !> abs(XTRUE(j,i) - X(j,i)) !> max_j ---------------------- !> abs(X(j,i)) !> !> The array is indexed by the right-hand side i (on which the !> componentwise relative error depends), and the type of error !> information as described below. There currently are up to three !> pieces of information returned for each right-hand side. If !> componentwise accuracy is not requested (PARAMS(3) = 0.0), then !> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most !> the first (:,N_ERR_BNDS) entries are returned. !> !> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith !> right-hand side. !> !> The second index in ERR_BNDS_COMP(:,err) contains the following !> three fields: !> err = 1 boolean. Trust the answer if the !> reciprocal condition number is less than the threshold !> sqrt(n) * slamch('Epsilon'). !> !> err = 2 error bound: The estimated forward error, !> almost certainly within a factor of 10 of the true error !> so long as the next entry is greater than the threshold !> sqrt(n) * slamch('Epsilon'). This error bound should only !> be trusted if the previous boolean is true. !> !> err = 3 Reciprocal condition number: Estimated componentwise !> reciprocal condition number. Compared with the threshold !> sqrt(n) * slamch('Epsilon') to determine if the error !> estimate is . These reciprocal condition !> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some !> appropriately scaled matrix Z. !> Let Z = S*(A*diag(x)), where x is the solution for the !> current right-hand side and S scales each row of !> A*diag(x) by a power of the radix so all absolute row !> sums of Z are approximately 1. !> !> See Lapack Working Note 165 for further details and extra !> cautions. !>
NPARAMS
!> NPARAMS is INTEGER !> Specifies the number of parameters set in PARAMS. If <= 0, the !> PARAMS array is never referenced and default values are used. !>
PARAMS
!> PARAMS is REAL array, dimension NPARAMS !> Specifies algorithm parameters. If an entry is < 0.0, then !> that entry will be filled with default value used for that !> parameter. Only positions up to NPARAMS are accessed; defaults !> are used for higher-numbered parameters. !> !> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative !> refinement or not. !> Default: 1.0 !> = 0.0: No refinement is performed, and no error bounds are !> computed. !> = 1.0: Use the double-precision refinement algorithm, !> possibly with doubled-single computations if the !> compilation environment does not support DOUBLE !> PRECISION. !> (other values are reserved for future use) !> !> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual !> computations allowed for refinement. !> Default: 10 !> Aggressive: Set to 100 to permit convergence using approximate !> factorizations or factorizations other than LU. If !> the factorization uses a technique other than !> Gaussian elimination, the guarantees in !> err_bnds_norm and err_bnds_comp may no longer be !> trustworthy. !> !> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code !> will attempt to find a solution with small componentwise !> relative error in the double-precision algorithm. Positive !> is true, 0.0 is false. !> Default: 1.0 (attempt componentwise convergence) !>
WORK
!> WORK is REAL array, dimension (4*N) !>
IWORK
!> IWORK is INTEGER array, dimension (N) !>
INFO
!> INFO is INTEGER !> = 0: Successful exit. The solution to every right-hand side is !> guaranteed. !> < 0: If INFO = -i, the i-th argument had an illegal value !> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization !> has been completed, but the factor U is exactly singular, so !> the solution and error bounds could not be computed. RCOND = 0 !> is returned. !> = N+J: The solution corresponding to the Jth right-hand side is !> not guaranteed. The solutions corresponding to other right- !> hand sides K with K > J may not be guaranteed as well, but !> only the first such right-hand side is reported. If a small !> componentwise error is not requested (PARAMS(3) = 0.0) then !> the Jth right-hand side is the first with a normwise error !> bound that is not guaranteed (the smallest J such !> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) !> the Jth right-hand side is the first with either a normwise or !> componentwise error bound that is not guaranteed (the smallest !> J such that either ERR_BNDS_NORM(J,1) = 0.0 or !> ERR_BNDS_COMP(J,1) = 0.0). See the definition of !> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information !> about all of the right-hand sides check ERR_BNDS_NORM or !> ERR_BNDS_COMP. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 435 of file sgbrfsx.f.
subroutine ZGBRFSX (character trans, character equed, integer n, integer kl, integer ku, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldafb, * ) afb, integer ldafb, integer, dimension( * ) ipiv, double precision, dimension( * ) r, double precision, dimension( * ) c, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx , * ) x, integer ldx, double precision rcond, double precision, dimension( * ) berr, integer n_err_bnds, double precision, dimension( nrhs, * ) err_bnds_norm, double precision, dimension( nrhs, * ) err_bnds_comp, integer nparams, double precision, dimension( * ) params, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)¶
ZGBRFSX
Purpose:
!> !> ZGBRFSX improves the computed solution to a system of linear !> equations and provides error bounds and backward error estimates !> for the solution. In addition to normwise error bound, the code !> provides maximum componentwise error bound if possible. See !> comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the !> error bounds. !> !> The original system of linear equations may have been equilibrated !> before calling this routine, as described by arguments EQUED, R !> and C below. In this case, the solution and error bounds returned !> are for the original unequilibrated system. !>
!> Some optional parameters are bundled in the PARAMS array. These !> settings determine how refinement is performed, but often the !> defaults are acceptable. If the defaults are acceptable, users !> can pass NPARAMS = 0 which prevents the source code from accessing !> the PARAMS argument. !>
Parameters
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !>
EQUED
!> EQUED is CHARACTER*1 !> Specifies the form of equilibration that was done to A !> before calling this routine. This is needed to compute !> the solution and error bounds correctly. !> = 'N': No equilibration !> = 'R': Row equilibration, i.e., A has been premultiplied by !> diag(R). !> = 'C': Column equilibration, i.e., A has been postmultiplied !> by diag(C). !> = 'B': Both row and column equilibration, i.e., A has been !> replaced by diag(R) * A * diag(C). !> The right hand side B has been changed accordingly. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
KL
!> KL is INTEGER !> The number of subdiagonals within the band of A. KL >= 0. !>
KU
!> KU is INTEGER !> The number of superdiagonals within the band of A. KU >= 0. !>
NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !>
AB
!> AB is COMPLEX*16 array, dimension (LDAB,N) !> The original band matrix A, stored in rows 1 to KL+KU+1. !> The j-th column of A is stored in the j-th column of the !> array AB as follows: !> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). !>
LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= KL+KU+1. !>
AFB
!> AFB is COMPLEX*16 array, dimension (LDAFB,N) !> Details of the LU factorization of the band matrix A, as !> computed by ZGBTRF. U is stored as an upper triangular band !> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and !> the multipliers used during the factorization are stored in !> rows KL+KU+2 to 2*KL+KU+1. !>
LDAFB
!> LDAFB is INTEGER !> The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices from ZGETRF; for 1<=i<=N, row i of the !> matrix was interchanged with row IPIV(i). !>
R
!> R is DOUBLE PRECISION array, dimension (N) !> The row scale factors for A. If EQUED = 'R' or 'B', A is !> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R !> is not accessed. R is an input argument if FACT = 'F'; !> otherwise, R is an output argument. If FACT = 'F' and !> EQUED = 'R' or 'B', each element of R must be positive. !> If R is output, each element of R is a power of the radix. !> If R is input, each element of R should be a power of the radix !> to ensure a reliable solution and error estimates. Scaling by !> powers of the radix does not cause rounding errors unless the !> result underflows or overflows. Rounding errors during scaling !> lead to refining with a matrix that is not equivalent to the !> input matrix, producing error estimates that may not be !> reliable. !>
C
!> C is DOUBLE PRECISION array, dimension (N) !> The column scale factors for A. If EQUED = 'C' or 'B', A is !> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C !> is not accessed. C is an input argument if FACT = 'F'; !> otherwise, C is an output argument. If FACT = 'F' and !> EQUED = 'C' or 'B', each element of C must be positive. !> If C is output, each element of C is a power of the radix. !> If C is input, each element of C should be a power of the radix !> to ensure a reliable solution and error estimates. Scaling by !> powers of the radix does not cause rounding errors unless the !> result underflows or overflows. Rounding errors during scaling !> lead to refining with a matrix that is not equivalent to the !> input matrix, producing error estimates that may not be !> reliable. !>
B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B. !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
X
!> X is COMPLEX*16 array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by ZGETRS. !> On exit, the improved solution matrix X. !>
LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
RCOND
!> RCOND is DOUBLE PRECISION !> Reciprocal scaled condition number. This is an estimate of the !> reciprocal Skeel condition number of the matrix A after !> equilibration (if done). If this is less than the machine !> precision (in particular, if it is zero), the matrix is singular !> to working precision. Note that the error may still be small even !> if this number is very small and the matrix appears ill- !> conditioned. !>
BERR
!> BERR is DOUBLE PRECISION array, dimension (NRHS) !> Componentwise relative backward error. This is the !> componentwise relative backward error of each solution vector X(j) !> (i.e., the smallest relative change in any element of A or B that !> makes X(j) an exact solution). !>
N_ERR_BNDS
!> N_ERR_BNDS is INTEGER !> Number of error bounds to return for each right hand side !> and each type (normwise or componentwise). See ERR_BNDS_NORM and !> ERR_BNDS_COMP below. !>
ERR_BNDS_NORM
!> ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) !> For each right-hand side, this array contains information about !> various error bounds and condition numbers corresponding to the !> normwise relative error, which is defined as follows: !> !> Normwise relative error in the ith solution vector: !> max_j (abs(XTRUE(j,i) - X(j,i))) !> ------------------------------ !> max_j abs(X(j,i)) !> !> The array is indexed by the type of error information as described !> below. There currently are up to three pieces of information !> returned. !> !> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith !> right-hand side. !> !> The second index in ERR_BNDS_NORM(:,err) contains the following !> three fields: !> err = 1 boolean. Trust the answer if the !> reciprocal condition number is less than the threshold !> sqrt(n) * dlamch('Epsilon'). !> !> err = 2 error bound: The estimated forward error, !> almost certainly within a factor of 10 of the true error !> so long as the next entry is greater than the threshold !> sqrt(n) * dlamch('Epsilon'). This error bound should only !> be trusted if the previous boolean is true. !> !> err = 3 Reciprocal condition number: Estimated normwise !> reciprocal condition number. Compared with the threshold !> sqrt(n) * dlamch('Epsilon') to determine if the error !> estimate is . These reciprocal condition !> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some !> appropriately scaled matrix Z. !> Let Z = S*A, where S scales each row by a power of the !> radix so all absolute row sums of Z are approximately 1. !> !> See Lapack Working Note 165 for further details and extra !> cautions. !>
ERR_BNDS_COMP
!> ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) !> For each right-hand side, this array contains information about !> various error bounds and condition numbers corresponding to the !> componentwise relative error, which is defined as follows: !> !> Componentwise relative error in the ith solution vector: !> abs(XTRUE(j,i) - X(j,i)) !> max_j ---------------------- !> abs(X(j,i)) !> !> The array is indexed by the right-hand side i (on which the !> componentwise relative error depends), and the type of error !> information as described below. There currently are up to three !> pieces of information returned for each right-hand side. If !> componentwise accuracy is not requested (PARAMS(3) = 0.0), then !> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most !> the first (:,N_ERR_BNDS) entries are returned. !> !> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith !> right-hand side. !> !> The second index in ERR_BNDS_COMP(:,err) contains the following !> three fields: !> err = 1 boolean. Trust the answer if the !> reciprocal condition number is less than the threshold !> sqrt(n) * dlamch('Epsilon'). !> !> err = 2 error bound: The estimated forward error, !> almost certainly within a factor of 10 of the true error !> so long as the next entry is greater than the threshold !> sqrt(n) * dlamch('Epsilon'). This error bound should only !> be trusted if the previous boolean is true. !> !> err = 3 Reciprocal condition number: Estimated componentwise !> reciprocal condition number. Compared with the threshold !> sqrt(n) * dlamch('Epsilon') to determine if the error !> estimate is . These reciprocal condition !> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some !> appropriately scaled matrix Z. !> Let Z = S*(A*diag(x)), where x is the solution for the !> current right-hand side and S scales each row of !> A*diag(x) by a power of the radix so all absolute row !> sums of Z are approximately 1. !> !> See Lapack Working Note 165 for further details and extra !> cautions. !>
NPARAMS
!> NPARAMS is INTEGER !> Specifies the number of parameters set in PARAMS. If <= 0, the !> PARAMS array is never referenced and default values are used. !>
PARAMS
!> PARAMS is DOUBLE PRECISION array, dimension NPARAMS !> Specifies algorithm parameters. If an entry is < 0.0, then !> that entry will be filled with default value used for that !> parameter. Only positions up to NPARAMS are accessed; defaults !> are used for higher-numbered parameters. !> !> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative !> refinement or not. !> Default: 1.0D+0 !> = 0.0: No refinement is performed, and no error bounds are !> computed. !> = 1.0: Use the double-precision refinement algorithm, !> possibly with doubled-single computations if the !> compilation environment does not support DOUBLE !> PRECISION. !> (other values are reserved for future use) !> !> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual !> computations allowed for refinement. !> Default: 10 !> Aggressive: Set to 100 to permit convergence using approximate !> factorizations or factorizations other than LU. If !> the factorization uses a technique other than !> Gaussian elimination, the guarantees in !> err_bnds_norm and err_bnds_comp may no longer be !> trustworthy. !> !> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code !> will attempt to find a solution with small componentwise !> relative error in the double-precision algorithm. Positive !> is true, 0.0 is false. !> Default: 1.0 (attempt componentwise convergence) !>
WORK
!> WORK is COMPLEX*16 array, dimension (2*N) !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (2*N) !>
INFO
!> INFO is INTEGER !> = 0: Successful exit. The solution to every right-hand side is !> guaranteed. !> < 0: If INFO = -i, the i-th argument had an illegal value !> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization !> has been completed, but the factor U is exactly singular, so !> the solution and error bounds could not be computed. RCOND = 0 !> is returned. !> = N+J: The solution corresponding to the Jth right-hand side is !> not guaranteed. The solutions corresponding to other right- !> hand sides K with K > J may not be guaranteed as well, but !> only the first such right-hand side is reported. If a small !> componentwise error is not requested (PARAMS(3) = 0.0) then !> the Jth right-hand side is the first with a normwise error !> bound that is not guaranteed (the smallest J such !> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) !> the Jth right-hand side is the first with either a normwise or !> componentwise error bound that is not guaranteed (the smallest !> J such that either ERR_BNDS_NORM(J,1) = 0.0 or !> ERR_BNDS_COMP(J,1) = 0.0). See the definition of !> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information !> about all of the right-hand sides check ERR_BNDS_NORM or !> ERR_BNDS_COMP. !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 435 of file zgbrfsx.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |