Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/dsyt22.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/dsyt22.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/dsyt22.f

SYNOPSIS

Functions/Subroutines


subroutine DSYT22 (itype, uplo, n, m, kband, a, lda, d, e, u, ldu, v, ldv, tau, work, result)
DSYT22

Function/Subroutine Documentation

subroutine DSYT22 (integer itype, character uplo, integer n, integer m, integer kband, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( ldu, * ) u, integer ldu, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( * ) tau, double precision, dimension( * ) work, double precision, dimension( 2 ) result)

DSYT22

Purpose:

!>
!>      DSYT22  generally checks a decomposition of the form
!>
!>              A U = U S
!>
!>      where A is symmetric, the columns of U are orthonormal, and S
!>      is diagonal (if KBAND=0) or symmetric tridiagonal (if
!>      KBAND=1).  If ITYPE=1, then U is represented as a dense matrix,
!>      otherwise the U is expressed as a product of Householder
!>      transformations, whose vectors are stored in the array  and
!>      whose scaling constants are in  

we shall use the letter !> to refer to the product of Householder transformations !> (which should be equal to U). !> !> Specifically, if ITYPE=1, then: !> !> RESULT(1) = | U**T A U - S | / ( |A| m ulp ) and !> RESULT(2) = | I - U**T U | / ( m ulp ) !>

!>  ITYPE   INTEGER
!>          Specifies the type of tests to be performed.
!>          1: U expressed as a dense orthogonal matrix:
!>             RESULT(1) = | A - U S U**T | / ( |A| n ulp )  and
!>             RESULT(2) = | I - U U**T | / ( n ulp )
!>
!>  UPLO    CHARACTER
!>          If UPLO='U', the upper triangle of A will be used and the
!>          (strictly) lower triangle will not be referenced.  If
!>          UPLO='L', the lower triangle of A will be used and the
!>          (strictly) upper triangle will not be referenced.
!>          Not modified.
!>
!>  N       INTEGER
!>          The size of the matrix.  If it is zero, DSYT22 does nothing.
!>          It must be at least zero.
!>          Not modified.
!>
!>  M       INTEGER
!>          The number of columns of U.  If it is zero, DSYT22 does
!>          nothing.  It must be at least zero.
!>          Not modified.
!>
!>  KBAND   INTEGER
!>          The bandwidth of the matrix.  It may only be zero or one.
!>          If zero, then S is diagonal, and E is not referenced.  If
!>          one, then S is symmetric tri-diagonal.
!>          Not modified.
!>
!>  A       DOUBLE PRECISION array, dimension (LDA , N)
!>          The original (unfactored) matrix.  It is assumed to be
!>          symmetric, and only the upper (UPLO='U') or only the lower
!>          (UPLO='L') will be referenced.
!>          Not modified.
!>
!>  LDA     INTEGER
!>          The leading dimension of A.  It must be at least 1
!>          and at least N.
!>          Not modified.
!>
!>  D       DOUBLE PRECISION array, dimension (N)
!>          The diagonal of the (symmetric tri-) diagonal matrix.
!>          Not modified.
!>
!>  E       DOUBLE PRECISION array, dimension (N)
!>          The off-diagonal of the (symmetric tri-) diagonal matrix.
!>          E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
!>          Not referenced if KBAND=0.
!>          Not modified.
!>
!>  U       DOUBLE PRECISION array, dimension (LDU, N)
!>          If ITYPE=1 or 3, this contains the orthogonal matrix in
!>          the decomposition, expressed as a dense matrix.  If ITYPE=2,
!>          then it is not referenced.
!>          Not modified.
!>
!>  LDU     INTEGER
!>          The leading dimension of U.  LDU must be at least N and
!>          at least 1.
!>          Not modified.
!>
!>  V       DOUBLE PRECISION array, dimension (LDV, N)
!>          If ITYPE=2 or 3, the lower triangle of this array contains
!>          the Householder vectors used to describe the orthogonal
!>          matrix in the decomposition.  If ITYPE=1, then it is not
!>          referenced.
!>          Not modified.
!>
!>  LDV     INTEGER
!>          The leading dimension of V.  LDV must be at least N and
!>          at least 1.
!>          Not modified.
!>
!>  TAU     DOUBLE PRECISION array, dimension (N)
!>          If ITYPE >= 2, then TAU(j) is the scalar factor of
!>          v(j) v(j)**T in the Householder transformation H(j) of
!>          the product  U = H(1)...H(n-2)
!>          If ITYPE < 2, then TAU is not referenced.
!>          Not modified.
!>
!>  WORK    DOUBLE PRECISION array, dimension (2*N**2)
!>          Workspace.
!>          Modified.
!>
!>  RESULT  DOUBLE PRECISION array, dimension (2)
!>          The values computed by the two tests described above.  The
!>          values are currently limited to 1/ulp, to avoid overflow.
!>          RESULT(1) is always modified.  RESULT(2) is modified only
!>          if LDU is at least N.
!>          Modified.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 155 of file dsyt22.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK