table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dspgvd.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dspgvd.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/dspgvd.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine DSPGVD (itype, jobz, uplo, n, ap, bp, w, z, ldz,
work, lwork, iwork, liwork, info)
DSPGVD
Function/Subroutine Documentation¶
subroutine DSPGVD (integer itype, character jobz, character uplo, integer n, double precision, dimension( * ) ap, double precision, dimension( * ) bp, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)¶
DSPGVD
Purpose:
!> !> DSPGVD computes all the eigenvalues, and optionally, the eigenvectors !> of a real generalized symmetric-definite eigenproblem, of the form !> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and !> B are assumed to be symmetric, stored in packed format, and B is also !> positive definite. !> If eigenvectors are desired, it uses a divide and conquer algorithm. !> !>
Parameters
ITYPE
!> ITYPE is INTEGER !> Specifies the problem type to be solved: !> = 1: A*x = (lambda)*B*x !> = 2: A*B*x = (lambda)*x !> = 3: B*A*x = (lambda)*x !>
JOBZ
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangles of A and B are stored; !> = 'L': Lower triangles of A and B are stored. !>
N
!> N is INTEGER !> The order of the matrices A and B. N >= 0. !>
AP
!> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, the contents of AP are destroyed. !>
BP
!> BP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> B, packed columnwise in a linear array. The j-th column of B !> is stored in the array BP as follows: !> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; !> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. !> !> On exit, the triangular factor U or L from the Cholesky !> factorization B = U**T*U or B = L*L**T, in the same storage !> format as B. !>
W
!> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order. !>
Z
!> Z is DOUBLE PRECISION array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of !> eigenvectors. The eigenvectors are normalized as follows: !> if ITYPE = 1 or 2, Z**T*B*Z = I; !> if ITYPE = 3, Z**T*inv(B)*Z = I. !> If JOBZ = 'N', then Z is not referenced. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the required LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If N <= 1, LWORK >= 1. !> If JOBZ = 'N' and N > 1, LWORK >= 2*N. !> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the required sizes of the WORK and IWORK !> arrays, returns these values as the first entries of the WORK !> and IWORK arrays, and no error message related to LWORK or !> LIWORK is issued by XERBLA. !>
IWORK
!> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the required LIWORK. !>
LIWORK
!> LIWORK is INTEGER !> The dimension of the array IWORK. !> If JOBZ = 'N' or N <= 1, LIWORK >= 1. !> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the required sizes of the WORK and !> IWORK arrays, returns these values as the first entries of !> the WORK and IWORK arrays, and no error message related to !> LWORK or LIWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: DPPTRF or DSPEVD returned an error code: !> <= N: if INFO = i, DSPEVD failed to converge; !> i off-diagonal elements of an intermediate !> tridiagonal form did not converge to zero; !> > N: if INFO = N + i, for 1 <= i <= N, then the leading !> principal minor of order i of B is not positive. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky,
USA
Definition at line 202 of file dspgvd.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |