Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/dlatm4.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/dlatm4.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/dlatm4.f

SYNOPSIS

Functions/Subroutines


subroutine DLATM4 (itype, n, nz1, nz2, isign, amagn, rcond, triang, idist, iseed, a, lda)
DLATM4

Function/Subroutine Documentation

subroutine DLATM4 (integer itype, integer n, integer nz1, integer nz2, integer isign, double precision amagn, double precision rcond, double precision triang, integer idist, integer, dimension( 4 ) iseed, double precision, dimension( lda, * ) a, integer lda)

DLATM4

Purpose:

!>
!> DLATM4 generates basic square matrices, which may later be
!> multiplied by others in order to produce test matrices.  It is
!> intended mainly to be used to test the generalized eigenvalue
!> routines.
!>
!> It first generates the diagonal and (possibly) subdiagonal,
!> according to the value of ITYPE, NZ1, NZ2, ISIGN, AMAGN, and RCOND.
!> It then fills in the upper triangle with random numbers, if TRIANG is
!> non-zero.
!> 

Parameters

ITYPE

!>          ITYPE is INTEGER
!>          The  of matrix on the diagonal and sub-diagonal.
!>          If ITYPE < 0, then type abs(ITYPE) is generated and then
!>             swapped end for end (A(I,J) := A'(N-J,N-I).)  See also
!>             the description of AMAGN and ISIGN.
!>
!>          Special types:
!>          = 0:  the zero matrix.
!>          = 1:  the identity.
!>          = 2:  a transposed Jordan block.
!>          = 3:  If N is odd, then a k+1 x k+1 transposed Jordan block
!>                followed by a k x k identity block, where k=(N-1)/2.
!>                If N is even, then k=(N-2)/2, and a zero diagonal entry
!>                is tacked onto the end.
!>
!>          Diagonal types.  The diagonal consists of NZ1 zeros, then
!>             k=N-NZ1-NZ2 nonzeros.  The subdiagonal is zero.  ITYPE
!>             specifies the nonzero diagonal entries as follows:
!>          = 4:  1, ..., k
!>          = 5:  1, RCOND, ..., RCOND
!>          = 6:  1, ..., 1, RCOND
!>          = 7:  1, a, a^2, ..., a^(k-1)=RCOND
!>          = 8:  1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND
!>          = 9:  random numbers chosen from (RCOND,1)
!>          = 10: random numbers with distribution IDIST (see DLARND.)
!> 

N

!>          N is INTEGER
!>          The order of the matrix.
!> 

NZ1

!>          NZ1 is INTEGER
!>          If abs(ITYPE) > 3, then the first NZ1 diagonal entries will
!>          be zero.
!> 

NZ2

!>          NZ2 is INTEGER
!>          If abs(ITYPE) > 3, then the last NZ2 diagonal entries will
!>          be zero.
!> 

ISIGN

!>          ISIGN is INTEGER
!>          = 0: The sign of the diagonal and subdiagonal entries will
!>               be left unchanged.
!>          = 1: The diagonal and subdiagonal entries will have their
!>               sign changed at random.
!>          = 2: If ITYPE is 2 or 3, then the same as ISIGN=1.
!>               Otherwise, with probability 0.5, odd-even pairs of
!>               diagonal entries A(2*j-1,2*j-1), A(2*j,2*j) will be
!>               converted to a 2x2 block by pre- and post-multiplying
!>               by distinct random orthogonal rotations.  The remaining
!>               diagonal entries will have their sign changed at random.
!> 

AMAGN

!>          AMAGN is DOUBLE PRECISION
!>          The diagonal and subdiagonal entries will be multiplied by
!>          AMAGN.
!> 

RCOND

!>          RCOND is DOUBLE PRECISION
!>          If abs(ITYPE) > 4, then the smallest diagonal entry will be
!>          entry will be RCOND.  RCOND must be between 0 and 1.
!> 

TRIANG

!>          TRIANG is DOUBLE PRECISION
!>          The entries above the diagonal will be random numbers with
!>          magnitude bounded by TRIANG (i.e., random numbers multiplied
!>          by TRIANG.)
!> 

IDIST

!>          IDIST is INTEGER
!>          Specifies the type of distribution to be used to generate a
!>          random matrix.
!>          = 1:  UNIFORM( 0, 1 )
!>          = 2:  UNIFORM( -1, 1 )
!>          = 3:  NORMAL ( 0, 1 )
!> 

ISEED

!>          ISEED is INTEGER array, dimension (4)
!>          On entry ISEED specifies the seed of the random number
!>          generator.  The values of ISEED are changed on exit, and can
!>          be used in the next call to DLATM4 to continue the same
!>          random number sequence.
!>          Note: ISEED(4) should be odd, for the random number generator
!>          used at present.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA, N)
!>          Array to be computed.
!> 

LDA

!>          LDA is INTEGER
!>          Leading dimension of A.  Must be at least 1 and at least N.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 173 of file dlatm4.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK