table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cunmbr.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cunmbr.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cunmbr.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine CUNMBR (vect, side, trans, m, n, k, a, lda, tau,
c, ldc, work, lwork, info)
CUNMBR
Function/Subroutine Documentation¶
subroutine CUNMBR (character vect, character side, character trans, integer m, integer n, integer k, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work, integer lwork, integer info)¶
CUNMBR
Purpose:
!> !> If VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C !> with !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> If VECT = 'P', CUNMBR overwrites the general complex M-by-N matrix C !> with !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': P * C C * P !> TRANS = 'C': P**H * C C * P**H !> !> Here Q and P**H are the unitary matrices determined by CGEBRD when !> reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q !> and P**H are defined as products of elementary reflectors H(i) and !> G(i) respectively. !> !> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the !> order of the unitary matrix Q or P**H that is applied. !> !> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: !> if nq >= k, Q = H(1) H(2) . . . H(k); !> if nq < k, Q = H(1) H(2) . . . H(nq-1). !> !> If VECT = 'P', A is assumed to have been a K-by-NQ matrix: !> if k < nq, P = G(1) G(2) . . . G(k); !> if k >= nq, P = G(1) G(2) . . . G(nq-1). !>
Parameters
VECT
!> VECT is CHARACTER*1 !> = 'Q': apply Q or Q**H; !> = 'P': apply P or P**H. !>
SIDE
!> SIDE is CHARACTER*1 !> = 'L': apply Q, Q**H, P or P**H from the Left; !> = 'R': apply Q, Q**H, P or P**H from the Right. !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q or P; !> = 'C': Conjugate transpose, apply Q**H or P**H. !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> If VECT = 'Q', the number of columns in the original !> matrix reduced by CGEBRD. !> If VECT = 'P', the number of rows in the original !> matrix reduced by CGEBRD. !> K >= 0. !>
A
!> A is COMPLEX array, dimension !> (LDA,min(nq,K)) if VECT = 'Q' !> (LDA,nq) if VECT = 'P' !> The vectors which define the elementary reflectors H(i) and !> G(i), whose products determine the matrices Q and P, as !> returned by CGEBRD. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. !> If VECT = 'Q', LDA >= max(1,nq); !> if VECT = 'P', LDA >= max(1,min(nq,K)). !>
TAU
!> TAU is COMPLEX array, dimension (min(nq,K)) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i) or G(i) which determines Q or P, as returned !> by CGEBRD in the array argument TAUQ or TAUP. !>
C
!> C is COMPLEX array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q !> or P*C or P**H*C or C*P or C*P**H. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M); !> if N = 0 or M = 0, LWORK >= 1. !> For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L', !> and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the !> optimal blocksize. (NB = 0 if M = 0 or N = 0.) !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 195 of file cunmbr.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |