Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ctplqt.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ctplqt.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/ctplqt.f

SYNOPSIS

Functions/Subroutines


subroutine CTPLQT (m, n, l, mb, a, lda, b, ldb, t, ldt, work, info)
CTPLQT

Function/Subroutine Documentation

subroutine CTPLQT (integer m, integer n, integer l, integer mb, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldt, * ) t, integer ldt, complex, dimension( * ) work, integer info)

CTPLQT

Purpose:

!>
!> CTPLQT computes a blocked LQ factorization of a complex
!>  matrix C, which is composed of a
!> triangular block A and pentagonal block B, using the compact
!> WY representation for Q.
!> 

Parameters

M

!>          M is INTEGER
!>          The number of rows of the matrix B, and the order of the
!>          triangular matrix A.
!>          M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix B.
!>          N >= 0.
!> 

L

!>          L is INTEGER
!>          The number of rows of the lower trapezoidal part of B.
!>          MIN(M,N) >= L >= 0.  See Further Details.
!> 

MB

!>          MB is INTEGER
!>          The block size to be used in the blocked QR.  M >= MB >= 1.
!> 

A

!>          A is COMPLEX array, dimension (LDA,M)
!>          On entry, the lower triangular M-by-M matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the lower triangular matrix L.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

B

!>          B is COMPLEX array, dimension (LDB,N)
!>          On entry, the pentagonal M-by-N matrix B.  The first N-L columns
!>          are rectangular, and the last L columns are lower trapezoidal.
!>          On exit, B contains the pentagonal matrix V.  See Further Details.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!> 

T

!>          T is COMPLEX array, dimension (LDT,N)
!>          The lower triangular block reflectors stored in compact form
!>          as a sequence of upper triangular blocks.  See Further Details.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= MB.
!> 

WORK

!>          WORK is COMPLEX array, dimension (MB*M)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The input matrix C is a M-by-(M+N) matrix
!>
!>               C = [ A ] [ B ]
!>
!>
!>  where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
!>  matrix consisting of a M-by-(N-L) rectangular matrix B1 on left of a M-by-L
!>  upper trapezoidal matrix B2:
!>          [ B ] = [ B1 ] [ B2 ]
!>                   [ B1 ]  <- M-by-(N-L) rectangular
!>                   [ B2 ]  <-     M-by-L lower trapezoidal.
!>
!>  The lower trapezoidal matrix B2 consists of the first L columns of a
!>  M-by-M lower triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
!>  B is rectangular M-by-N; if M=L=N, B is lower triangular.
!>
!>  The matrix W stores the elementary reflectors H(i) in the i-th row
!>  above the diagonal (of A) in the M-by-(M+N) input matrix C
!>            [ C ] = [ A ] [ B ]
!>                   [ A ]  <- lower triangular M-by-M
!>                   [ B ]  <- M-by-N pentagonal
!>
!>  so that W can be represented as
!>            [ W ] = [ I ] [ V ]
!>                   [ I ]  <- identity, M-by-M
!>                   [ V ]  <- M-by-N, same form as B.
!>
!>  Thus, all of information needed for W is contained on exit in B, which
!>  we call V above.  Note that V has the same form as B; that is,
!>            [ V ] = [ V1 ] [ V2 ]
!>                   [ V1 ] <- M-by-(N-L) rectangular
!>                   [ V2 ] <-     M-by-L lower trapezoidal.
!>
!>  The rows of V represent the vectors which define the H(i)'s.
!>
!>  The number of blocks is B = ceiling(M/MB), where each
!>  block is of order MB except for the last block, which is of order
!>  IB = M - (M-1)*MB.  For each of the B blocks, a upper triangular block
!>  reflector factor is computed: T1, T2, ..., TB.  The MB-by-MB (and IB-by-IB
!>  for the last block) T's are stored in the MB-by-N matrix T as
!>
!>               T = [T1 T2 ... TB].
!> 

Definition at line 172 of file ctplqt.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK