table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/cqlt01.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/cqlt01.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/cqlt01.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine CQLT01 (m, n, a, af, q, l, lda, tau, work,
lwork, rwork, result)
CQLT01
Function/Subroutine Documentation¶
subroutine CQLT01 (integer m, integer n, complex, dimension( lda, * ) a, complex, dimension( lda, * ) af, complex, dimension( lda, * ) q, complex, dimension( lda, * ) l, integer lda, complex, dimension( * ) tau, complex, dimension( lwork ) work, integer lwork, real, dimension( * ) rwork, real, dimension( * ) result)¶
CQLT01
Purpose:
!> !> CQLT01 tests CGEQLF, which computes the QL factorization of an m-by-n !> matrix A, and partially tests CUNGQL which forms the m-by-m !> orthogonal matrix Q. !> !> CQLT01 compares L with Q'*A, and checks that Q is orthogonal. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,N) !> The m-by-n matrix A. !>
AF
!> AF is COMPLEX array, dimension (LDA,N) !> Details of the QL factorization of A, as returned by CGEQLF. !> See CGEQLF for further details. !>
Q
!> Q is COMPLEX array, dimension (LDA,M) !> The m-by-m orthogonal matrix Q. !>
L
!> L is COMPLEX array, dimension (LDA,max(M,N)) !>
LDA
!> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and R. !> LDA >= max(M,N). !>
TAU
!> TAU is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by CGEQLF. !>
WORK
!> WORK is COMPLEX array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !>
RWORK
!> RWORK is REAL array, dimension (M) !>
RESULT
!> RESULT is REAL array, dimension (2) !> The test ratios: !> RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 124 of file cqlt01.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |