table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/chpevx.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/chpevx.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/chpevx.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine CHPEVX (jobz, range, uplo, n, ap, vl, vu, il,
iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
CHPEVX computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices
Function/Subroutine Documentation¶
subroutine CHPEVX (character jobz, character range, character uplo, integer n, complex, dimension( * ) ap, real vl, real vu, integer il, integer iu, real abstol, integer m, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, real, dimension( * ) rwork, integer, dimension( * ) iwork, integer, dimension( * ) ifail, integer info)¶
CHPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
!> !> CHPEVX computes selected eigenvalues and, optionally, eigenvectors !> of a complex Hermitian matrix A in packed storage. !> Eigenvalues/vectors can be selected by specifying either a range of !> values or a range of indices for the desired eigenvalues. !>
Parameters
JOBZ
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
RANGE
!> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found; !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found; !> = 'I': the IL-th through IU-th eigenvalues will be found. !>
UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
AP
!> AP is COMPLEX array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, AP is overwritten by values generated during the !> reduction to tridiagonal form. If UPLO = 'U', the diagonal !> and first superdiagonal of the tridiagonal matrix T overwrite !> the corresponding elements of A, and if UPLO = 'L', the !> diagonal and first subdiagonal of T overwrite the !> corresponding elements of A. !>
VL
!> VL is REAL !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !>
VU
!> VU is REAL !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !>
IL
!> IL is INTEGER !> If RANGE='I', the index of the !> smallest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. !> Not referenced if RANGE = 'A' or 'V'. !>
IU
!> IU is INTEGER !> If RANGE='I', the index of the !> largest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. !> Not referenced if RANGE = 'A' or 'V'. !>
ABSTOL
!> ABSTOL is REAL !> The absolute error tolerance for the eigenvalues. !> An approximate eigenvalue is accepted as converged !> when it is determined to lie in an interval [a,b] !> of width less than or equal to !> !> ABSTOL + EPS * max( |a|,|b| ) , !> !> where EPS is the machine precision. If ABSTOL is less than !> or equal to zero, then EPS*|T| will be used in its place, !> where |T| is the 1-norm of the tridiagonal matrix obtained !> by reducing AP to tridiagonal form. !> !> Eigenvalues will be computed most accurately when ABSTOL is !> set to twice the underflow threshold 2*SLAMCH('S'), not zero. !> If this routine returns with INFO>0, indicating that some !> eigenvectors did not converge, try setting ABSTOL to !> 2*SLAMCH('S'). !> !> See by Demmel and !> Kahan, LAPACK Working Note #3. !>
M
!> M is INTEGER !> The total number of eigenvalues found. 0 <= M <= N. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. !>
W
!> W is REAL array, dimension (N) !> If INFO = 0, the selected eigenvalues in ascending order. !>
Z
!> Z is COMPLEX array, dimension (LDZ, max(1,M)) !> If JOBZ = 'V', then if INFO = 0, the first M columns of Z !> contain the orthonormal eigenvectors of the matrix A !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i). !> If an eigenvector fails to converge, then that column of Z !> contains the latest approximation to the eigenvector, and !> the index of the eigenvector is returned in IFAIL. !> If JOBZ = 'N', then Z is not referenced. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used. !>
LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !>
WORK
!> WORK is COMPLEX array, dimension (2*N) !>
RWORK
!> RWORK is REAL array, dimension (7*N) !>
IWORK
!> IWORK is INTEGER array, dimension (5*N) !>
IFAIL
!> IFAIL is INTEGER array, dimension (N) !> If JOBZ = 'V', then if INFO = 0, the first M elements of !> IFAIL are zero. If INFO > 0, then IFAIL contains the !> indices of the eigenvectors that failed to converge. !> If JOBZ = 'N', then IFAIL is not referenced. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, then i eigenvectors failed to converge. !> Their indices are stored in array IFAIL. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 237 of file chpevx.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |