Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cheevd_2stage.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cheevd_2stage.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/cheevd_2stage.f

SYNOPSIS

Functions/Subroutines


subroutine CHEEVD_2STAGE (jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info)
CHEEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices

Function/Subroutine Documentation

subroutine CHEEVD_2STAGE (character jobz, character uplo, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) w, complex, dimension( * ) work, integer lwork, real, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)

CHEEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices

Purpose:

!>
!> CHEEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
!> complex Hermitian matrix A using the 2stage technique for
!> the reduction to tridiagonal.  If eigenvectors are desired, it uses a
!> divide and conquer algorithm.
!>
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!>                  Not available in this release.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA, N)
!>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of A contains the
!>          upper triangular part of the matrix A.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of A contains
!>          the lower triangular part of the matrix A.
!>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
!>          orthonormal eigenvectors of the matrix A.
!>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
!>          or the upper triangle (if UPLO='U') of A, including the
!>          diagonal, is destroyed.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

W

!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

WORK

!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If N <= 1,               LWORK must be at least 1.
!>          If JOBZ = 'N' and N > 1, LWORK must be queried.
!>                                   LWORK = MAX(1, dimension) where
!>                                   dimension = max(stage1,stage2) + (KD+1)*N + N+1
!>                                             = N*KD + N*max(KD+1,FACTOPTNB)
!>                                               + max(2*KD*KD, KD*NTHREADS)
!>                                               + (KD+1)*N + N+1
!>                                   where KD is the blocking size of the reduction,
!>                                   FACTOPTNB is the blocking used by the QR or LQ
!>                                   algorithm, usually FACTOPTNB=128 is a good choice
!>                                   NTHREADS is the number of threads used when
!>                                   openMP compilation is enabled, otherwise =1.
!>          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK, RWORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

RWORK

!>          RWORK is REAL array,
!>                                         dimension (LRWORK)
!>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
!> 

LRWORK

!>          LRWORK is INTEGER
!>          The dimension of the array RWORK.
!>          If N <= 1,                LRWORK must be at least 1.
!>          If JOBZ  = 'N' and N > 1, LRWORK must be at least N.
!>          If JOBZ  = 'V' and N > 1, LRWORK must be at least
!>                         1 + 5*N + 2*N**2.
!>
!>          If LRWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

IWORK

!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> 

LIWORK

!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If N <= 1,                LIWORK must be at least 1.
!>          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
!>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
!>                to converge; i off-diagonal elements of an intermediate
!>                tridiagonal form did not converge to zero;
!>                if INFO = i and JOBZ = 'V', then the algorithm failed
!>                to compute an eigenvalue while working on the submatrix
!>                lying in rows and columns INFO/(N+1) through
!>                mod(INFO,N+1).
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

Modified description of INFO. Sven, 16 Feb 05.

Contributors:

Jeff Rutter, Computer Science Division, University of California at Berkeley, USA

Further Details:

!>
!>  All details about the 2stage techniques are available in:
!>
!>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
!>  Parallel reduction to condensed forms for symmetric eigenvalue problems
!>  using aggregated fine-grained and memory-aware kernels. In Proceedings
!>  of 2011 International Conference for High Performance Computing,
!>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
!>  Article 8 , 11 pages.
!>  http://doi.acm.org/10.1145/2063384.2063394
!>
!>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
!>  An improved parallel singular value algorithm and its implementation
!>  for multicore hardware, In Proceedings of 2013 International Conference
!>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
!>  Denver, Colorado, USA, 2013.
!>  Article 90, 12 pages.
!>  http://doi.acm.org/10.1145/2503210.2503292
!>
!>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
!>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure
!>  calculations based on fine-grained memory aware tasks.
!>  International Journal of High Performance Computing Applications.
!>  Volume 28 Issue 2, Pages 196-209, May 2014.
!>  http://hpc.sagepub.com/content/28/2/196
!>
!> 

Definition at line 245 of file cheevd_2stage.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK