Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/cdrvev.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/cdrvev.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/EIG/cdrvev.f

SYNOPSIS

Functions/Subroutines


subroutine CDRVEV (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, h, w, w1, vl, ldvl, vr, ldvr, lre, ldlre, result, work, nwork, rwork, iwork, info)
CDRVEV

Function/Subroutine Documentation

subroutine CDRVEV (integer nsizes, integer, dimension( * ) nn, integer ntypes, logical, dimension( * ) dotype, integer, dimension( 4 ) iseed, real thresh, integer nounit, complex, dimension( lda, * ) a, integer lda, complex, dimension( lda, * ) h, complex, dimension( * ) w, complex, dimension( * ) w1, complex, dimension( ldvl, * ) vl, integer ldvl, complex, dimension( ldvr, * ) vr, integer ldvr, complex, dimension( ldlre, * ) lre, integer ldlre, real, dimension( 7 ) result, complex, dimension( * ) work, integer nwork, real, dimension( * ) rwork, integer, dimension( * ) iwork, integer info)

CDRVEV

Purpose:

!>
!>    CDRVEV  checks the nonsymmetric eigenvalue problem driver CGEEV.
!>
!>    When CDRVEV is called, a number of matrix  () and a
!>    number of matrix  are specified.  For each size ()
!>    and each type of matrix, one matrix will be generated and used
!>    to test the nonsymmetric eigenroutines.  For each matrix, 7
!>    tests will be performed:
!>
!>    (1)     | A * VR - VR * W | / ( n |A| ulp )
!>
!>      Here VR is the matrix of unit right eigenvectors.
!>      W is a diagonal matrix with diagonal entries W(j).
!>
!>    (2)     | A**H * VL - VL * W**H | / ( n |A| ulp )
!>
!>      Here VL is the matrix of unit left eigenvectors, A**H is the
!>      conjugate-transpose of A, and W is as above.
!>
!>    (3)     | |VR(i)| - 1 | / ulp and whether largest component real
!>
!>      VR(i) denotes the i-th column of VR.
!>
!>    (4)     | |VL(i)| - 1 | / ulp and whether largest component real
!>
!>      VL(i) denotes the i-th column of VL.
!>
!>    (5)     W(full) = W(partial)
!>
!>      W(full) denotes the eigenvalues computed when both VR and VL
!>      are also computed, and W(partial) denotes the eigenvalues
!>      computed when only W, only W and VR, or only W and VL are
!>      computed.
!>
!>    (6)     VR(full) = VR(partial)
!>
!>      VR(full) denotes the right eigenvectors computed when both VR
!>      and VL are computed, and VR(partial) denotes the result
!>      when only VR is computed.
!>
!>     (7)     VL(full) = VL(partial)
!>
!>      VL(full) denotes the left eigenvectors computed when both VR
!>      and VL are also computed, and VL(partial) denotes the result
!>      when only VL is computed.
!>
!>    The  are specified by an array NN(1:NSIZES); the value of
!>    each element NN(j) specifies one size.
!>    The  are specified by a logical array DOTYPE( 1:NTYPES );
!>    if DOTYPE(j) is .TRUE., then matrix type  will be generated.
!>    Currently, the list of possible types is:
!>
!>    (1)  The zero matrix.
!>    (2)  The identity matrix.
!>    (3)  A (transposed) Jordan block, with 1's on the diagonal.
!>
!>    (4)  A diagonal matrix with evenly spaced entries
!>         1, ..., ULP  and random complex angles.
!>         (ULP = (first number larger than 1) - 1 )
!>    (5)  A diagonal matrix with geometrically spaced entries
!>         1, ..., ULP  and random complex angles.
!>    (6)  A diagonal matrix with  entries 1, ULP, ..., ULP
!>         and random complex angles.
!>
!>    (7)  Same as (4), but multiplied by a constant near
!>         the overflow threshold
!>    (8)  Same as (4), but multiplied by a constant near
!>         the underflow threshold
!>
!>    (9)  A matrix of the form  U' T U, where U is unitary and
!>         T has evenly spaced entries 1, ..., ULP with random complex
!>         angles on the diagonal and random O(1) entries in the upper
!>         triangle.
!>
!>    (10) A matrix of the form  U' T U, where U is unitary and
!>         T has geometrically spaced entries 1, ..., ULP with random
!>         complex angles on the diagonal and random O(1) entries in
!>         the upper triangle.
!>
!>    (11) A matrix of the form  U' T U, where U is unitary and
!>         T has  entries 1, ULP,..., ULP with random
!>         complex angles on the diagonal and random O(1) entries in
!>         the upper triangle.
!>
!>    (12) A matrix of the form  U' T U, where U is unitary and
!>         T has complex eigenvalues randomly chosen from
!>         ULP < |z| < 1   and random O(1) entries in the upper
!>         triangle.
!>
!>    (13) A matrix of the form  X' T X, where X has condition
!>         SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
!>         with random complex angles on the diagonal and random O(1)
!>         entries in the upper triangle.
!>
!>    (14) A matrix of the form  X' T X, where X has condition
!>         SQRT( ULP ) and T has geometrically spaced entries
!>         1, ..., ULP with random complex angles on the diagonal
!>         and random O(1) entries in the upper triangle.
!>
!>    (15) A matrix of the form  X' T X, where X has condition
!>         SQRT( ULP ) and T has  entries 1, ULP,..., ULP
!>         with random complex angles on the diagonal and random O(1)
!>         entries in the upper triangle.
!>
!>    (16) A matrix of the form  X' T X, where X has condition
!>         SQRT( ULP ) and T has complex eigenvalues randomly chosen
!>         from ULP < |z| < 1 and random O(1) entries in the upper
!>         triangle.
!>
!>    (17) Same as (16), but multiplied by a constant
!>         near the overflow threshold
!>    (18) Same as (16), but multiplied by a constant
!>         near the underflow threshold
!>
!>    (19) Nonsymmetric matrix with random entries chosen from |z| < 1
!>         If N is at least 4, all entries in first two rows and last
!>         row, and first column and last two columns are zero.
!>    (20) Same as (19), but multiplied by a constant
!>         near the overflow threshold
!>    (21) Same as (19), but multiplied by a constant
!>         near the underflow threshold
!> 

Parameters

NSIZES

!>          NSIZES is INTEGER
!>          The number of sizes of matrices to use.  If it is zero,
!>          CDRVEV does nothing.  It must be at least zero.
!> 

NN

!>          NN is INTEGER array, dimension (NSIZES)
!>          An array containing the sizes to be used for the matrices.
!>          Zero values will be skipped.  The values must be at least
!>          zero.
!> 

NTYPES

!>          NTYPES is INTEGER
!>          The number of elements in DOTYPE.   If it is zero, CDRVEV
!>          does nothing.  It must be at least zero.  If it is MAXTYP+1
!>          and NSIZES is 1, then an additional type, MAXTYP+1 is
!>          defined, which is to use whatever matrix is in A.  This
!>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
!>          DOTYPE(MAXTYP+1) is .TRUE. .
!> 

DOTYPE

!>          DOTYPE is LOGICAL array, dimension (NTYPES)
!>          If DOTYPE(j) is .TRUE., then for each size in NN a
!>          matrix of that size and of type j will be generated.
!>          If NTYPES is smaller than the maximum number of types
!>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
!>          MAXTYP will not be generated.  If NTYPES is larger
!>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
!>          will be ignored.
!> 

ISEED

!>          ISEED is INTEGER array, dimension (4)
!>          On entry ISEED specifies the seed of the random number
!>          generator. The array elements should be between 0 and 4095;
!>          if not they will be reduced mod 4096.  Also, ISEED(4) must
!>          be odd.  The random number generator uses a linear
!>          congruential sequence limited to small integers, and so
!>          should produce machine independent random numbers. The
!>          values of ISEED are changed on exit, and can be used in the
!>          next call to CDRVEV to continue the same random number
!>          sequence.
!> 

THRESH

!>          THRESH is REAL
!>          A test will count as  if the , computed as
!>          described above, exceeds THRESH.  Note that the error
!>          is scaled to be O(1), so THRESH should be a reasonably
!>          small multiple of 1, e.g., 10 or 100.  In particular,
!>          it should not depend on the precision (single vs. double)
!>          or the size of the matrix.  It must be at least zero.
!> 

NOUNIT

!>          NOUNIT is INTEGER
!>          The FORTRAN unit number for printing out error messages
!>          (e.g., if a routine returns INFO not equal to 0.)
!> 

A

!>          A is COMPLEX array, dimension (LDA, max(NN))
!>          Used to hold the matrix whose eigenvalues are to be
!>          computed.  On exit, A contains the last matrix actually used.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of A, and H. LDA must be at
!>          least 1 and at least max(NN).
!> 

H

!>          H is COMPLEX array, dimension (LDA, max(NN))
!>          Another copy of the test matrix A, modified by CGEEV.
!> 

W

!>          W is COMPLEX array, dimension (max(NN))
!>          The eigenvalues of A. On exit, W are the eigenvalues of
!>          the matrix in A.
!> 

W1

!>          W1 is COMPLEX array, dimension (max(NN))
!>          Like W, this array contains the eigenvalues of A,
!>          but those computed when CGEEV only computes a partial
!>          eigendecomposition, i.e. not the eigenvalues and left
!>          and right eigenvectors.
!> 

VL

!>          VL is COMPLEX array, dimension (LDVL, max(NN))
!>          VL holds the computed left eigenvectors.
!> 

LDVL

!>          LDVL is INTEGER
!>          Leading dimension of VL. Must be at least max(1,max(NN)).
!> 

VR

!>          VR is COMPLEX array, dimension (LDVR, max(NN))
!>          VR holds the computed right eigenvectors.
!> 

LDVR

!>          LDVR is INTEGER
!>          Leading dimension of VR. Must be at least max(1,max(NN)).
!> 

LRE

!>          LRE is COMPLEX array, dimension (LDLRE, max(NN))
!>          LRE holds the computed right or left eigenvectors.
!> 

LDLRE

!>          LDLRE is INTEGER
!>          Leading dimension of LRE. Must be at least max(1,max(NN)).
!> 

RESULT

!>          RESULT is REAL array, dimension (7)
!>          The values computed by the seven tests described above.
!>          The values are currently limited to 1/ulp, to avoid
!>          overflow.
!> 

WORK

!>          WORK is COMPLEX array, dimension (NWORK)
!> 

NWORK

!>          NWORK is INTEGER
!>          The number of entries in WORK.  This must be at least
!>          5*NN(j)+2*NN(j)**2 for all j.
!> 

RWORK

!>          RWORK is REAL array, dimension (2*max(NN))
!> 

IWORK

!>          IWORK is INTEGER array, dimension (max(NN))
!> 

INFO

!>          INFO is INTEGER
!>          If 0, then everything ran OK.
!>           -1: NSIZES < 0
!>           -2: Some NN(j) < 0
!>           -3: NTYPES < 0
!>           -6: THRESH < 0
!>           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
!>          -14: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ).
!>          -16: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ).
!>          -18: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ).
!>          -21: NWORK too small.
!>          If  CLATMR, CLATMS, CLATME or CGEEV returns an error code,
!>              the absolute value of it is returned.
!>
!>-----------------------------------------------------------------------
!>
!>     Some Local Variables and Parameters:
!>     ---- ----- --------- --- ----------
!>
!>     ZERO, ONE       Real 0 and 1.
!>     MAXTYP          The number of types defined.
!>     NMAX            Largest value in NN.
!>     NERRS           The number of tests which have exceeded THRESH
!>     COND, CONDS,
!>     IMODE           Values to be passed to the matrix generators.
!>     ANORM           Norm of A; passed to matrix generators.
!>
!>     OVFL, UNFL      Overflow and underflow thresholds.
!>     ULP, ULPINV     Finest relative precision and its inverse.
!>     RTULP, RTULPI   Square roots of the previous 4 values.
!>
!>             The following four arrays decode JTYPE:
!>     KTYPE(j)        The general type (1-10) for type .
!>     KMODE(j)        The MODE value to be passed to the matrix
!>                     generator for type .
!>     KMAGN(j)        The order of magnitude ( O(1),
!>                     O(overflow^(1/2) ), O(underflow^(1/2) )
!>     KCONDS(j)       Selectw whether CONDS is to be 1 or
!>                     1/sqrt(ulp).  (0 means irrelevant.)
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 387 of file cdrvev.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK