Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zsycon_3.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zsycon_3.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zsycon_3.f

SYNOPSIS

Functions/Subroutines


subroutine ZSYCON_3 (uplo, n, a, lda, e, ipiv, anorm, rcond, work, info)
ZSYCON_3

Function/Subroutine Documentation

subroutine ZSYCON_3 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, double precision anorm, double precision rcond, complex*16, dimension( * ) work, integer info)

ZSYCON_3

Purpose:

!> ZSYCON_3 estimates the reciprocal of the condition number (in the
!> 1-norm) of a complex symmetric matrix A using the factorization
!> computed by ZSYTRF_RK or ZSYTRF_BK:
!>
!>    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
!>
!> where U (or L) is unit upper (or lower) triangular matrix,
!> U**T (or L**T) is the transpose of U (or L), P is a permutation
!> matrix, P**T is the transpose of P, and D is symmetric and block
!> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
!>
!> An estimate is obtained for norm(inv(A)), and the reciprocal of the
!> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
!> This routine uses BLAS3 solver ZSYTRS_3.
!> 

Parameters

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the details of the factorization are
!>          stored as an upper or lower triangular matrix:
!>          = 'U':  Upper triangular, form is A = P*U*D*(U**T)*(P**T);
!>          = 'L':  Lower triangular, form is A = P*L*D*(L**T)*(P**T).
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          Diagonal of the block diagonal matrix D and factors U or L
!>          as computed by ZSYTRF_RK and ZSYTRF_BK:
!>            a) ONLY diagonal elements of the symmetric block diagonal
!>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
!>               (superdiagonal (or subdiagonal) elements of D
!>                should be provided on entry in array E), and
!>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
!>               If UPLO = 'L': factor L in the subdiagonal part of A.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

E

!>          E is COMPLEX*16 array, dimension (N)
!>          On entry, contains the superdiagonal (or subdiagonal)
!>          elements of the symmetric block diagonal matrix D
!>          with 1-by-1 or 2-by-2 diagonal blocks, where
!>          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
!>          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
!>
!>          NOTE: For 1-by-1 diagonal block D(k), where
!>          1 <= k <= N, the element E(k) is not referenced in both
!>          UPLO = 'U' or UPLO = 'L' cases.
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by ZSYTRF_RK or ZSYTRF_BK.
!> 

ANORM

!>          ANORM is DOUBLE PRECISION
!>          The 1-norm of the original matrix A.
!> 

RCOND

!>          RCOND is DOUBLE PRECISION
!>          The reciprocal of the condition number of the matrix A,
!>          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
!>          estimate of the 1-norm of inv(A) computed in this routine.
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (2*N)
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

!>
!>  June 2017,  Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> 

Definition at line 164 of file zsycon_3.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK