Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zqrt03.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zqrt03.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zqrt03.f

SYNOPSIS

Functions/Subroutines


subroutine ZQRT03 (m, n, k, af, c, cc, q, lda, tau, work, lwork, rwork, result)
ZQRT03

Function/Subroutine Documentation

subroutine ZQRT03 (integer m, integer n, integer k, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) c, complex*16, dimension( lda, * ) cc, complex*16, dimension( lda, * ) q, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result)

ZQRT03

Purpose:

!>
!> ZQRT03 tests ZUNMQR, which computes Q*C, Q'*C, C*Q or C*Q'.
!>
!> ZQRT03 compares the results of a call to ZUNMQR with the results of
!> forming Q explicitly by a call to ZUNGQR and then performing matrix
!> multiplication by a call to ZGEMM.
!> 

Parameters

M

!>          M is INTEGER
!>          The order of the orthogonal matrix Q.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of rows or columns of the matrix C; C is m-by-n if
!>          Q is applied from the left, or n-by-m if Q is applied from
!>          the right.  N >= 0.
!> 

K

!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          orthogonal matrix Q.  M >= K >= 0.
!> 

AF

!>          AF is COMPLEX*16 array, dimension (LDA,N)
!>          Details of the QR factorization of an m-by-n matrix, as
!>          returned by ZGEQRF. See ZGEQRF for further details.
!> 

C

!>          C is COMPLEX*16 array, dimension (LDA,N)
!> 

CC

!>          CC is COMPLEX*16 array, dimension (LDA,N)
!> 

Q

!>          Q is COMPLEX*16 array, dimension (LDA,M)
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the arrays AF, C, CC, and Q.
!> 

TAU

!>          TAU is COMPLEX*16 array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors corresponding
!>          to the QR factorization in AF.
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (LWORK)
!> 

LWORK

!>          LWORK is INTEGER
!>          The length of WORK.  LWORK must be at least M, and should be
!>          M*NB, where NB is the blocksize for this environment.
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array, dimension (M)
!> 

RESULT

!>          RESULT is DOUBLE PRECISION array, dimension (4)
!>          The test ratios compare two techniques for multiplying a
!>          random matrix C by an m-by-m orthogonal matrix Q.
!>          RESULT(1) = norm( Q*C - Q*C )  / ( M * norm(C) * EPS )
!>          RESULT(2) = norm( C*Q - C*Q )  / ( M * norm(C) * EPS )
!>          RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS )
!>          RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS )
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 134 of file zqrt03.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK