table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zqlt03.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zqlt03.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/zqlt03.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZQLT03 (m, n, k, af, c, cc, q, lda, tau, work,
lwork, rwork, result)
ZQLT03
Function/Subroutine Documentation¶
subroutine ZQLT03 (integer m, integer n, integer k, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) c, complex*16, dimension( lda, * ) cc, complex*16, dimension( lda, * ) q, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result)¶
ZQLT03
Purpose:
!> !> ZQLT03 tests ZUNMQL, which computes Q*C, Q'*C, C*Q or C*Q'. !> !> ZQLT03 compares the results of a call to ZUNMQL with the results of !> forming Q explicitly by a call to ZUNGQL and then performing matrix !> multiplication by a call to ZGEMM. !>
Parameters
M
!> M is INTEGER !> The order of the orthogonal matrix Q. M >= 0. !>
N
!> N is INTEGER !> The number of rows or columns of the matrix C; C is m-by-n if !> Q is applied from the left, or n-by-m if Q is applied from !> the right. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines the !> orthogonal matrix Q. M >= K >= 0. !>
AF
!> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the QL factorization of an m-by-n matrix, as !> returned by ZGEQLF. See CGEQLF for further details. !>
C
!> C is COMPLEX*16 array, dimension (LDA,N) !>
CC
!> CC is COMPLEX*16 array, dimension (LDA,N) !>
Q
!> Q is COMPLEX*16 array, dimension (LDA,M) !>
LDA
!> LDA is INTEGER !> The leading dimension of the arrays AF, C, CC, and Q. !>
TAU
!> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors corresponding !> to the QL factorization in AF. !>
WORK
!> WORK is COMPLEX*16 array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The length of WORK. LWORK must be at least M, and should be !> M*NB, where NB is the blocksize for this environment. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (M) !>
RESULT
!> RESULT is DOUBLE PRECISION array, dimension (4) !> The test ratios compare two techniques for multiplying a !> random matrix C by an m-by-m orthogonal matrix Q. !> RESULT(1) = norm( Q*C - Q*C ) / ( M * norm(C) * EPS ) !> RESULT(2) = norm( C*Q - C*Q ) / ( M * norm(C) * EPS ) !> RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS ) !> RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 134 of file zqlt03.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |