Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zheevd.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zheevd.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zheevd.f

SYNOPSIS

Functions/Subroutines


subroutine ZHEEVD (jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices

Function/Subroutine Documentation

subroutine ZHEEVD (character jobz, character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) w, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)

ZHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices

Purpose:

!>
!> ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a
!> complex Hermitian matrix A.  If eigenvectors are desired, it uses a
!> divide and conquer algorithm.
!>
!> 

Parameters

JOBZ

!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA, N)
!>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of A contains the
!>          upper triangular part of the matrix A.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of A contains
!>          the lower triangular part of the matrix A.
!>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
!>          orthonormal eigenvectors of the matrix A.
!>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
!>          or the upper triangle (if UPLO='U') of A, including the
!>          diagonal, is destroyed.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

W

!>          W is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The length of the array WORK.
!>          If N <= 1,                LWORK must be at least 1.
!>          If JOBZ  = 'N' and N > 1, LWORK must be at least N + 1.
!>          If JOBZ  = 'V' and N > 1, LWORK must be at least 2*N + N**2.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK, RWORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array,
!>                                         dimension (LRWORK)
!>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
!> 

LRWORK

!>          LRWORK is INTEGER
!>          The dimension of the array RWORK.
!>          If N <= 1,                LRWORK must be at least 1.
!>          If JOBZ  = 'N' and N > 1, LRWORK must be at least N.
!>          If JOBZ  = 'V' and N > 1, LRWORK must be at least
!>                         1 + 5*N + 2*N**2.
!>
!>          If LRWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

IWORK

!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> 

LIWORK

!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If N <= 1,                LIWORK must be at least 1.
!>          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
!>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
!>                to converge; i off-diagonal elements of an intermediate
!>                tridiagonal form did not converge to zero;
!>                if INFO = i and JOBZ = 'V', then the algorithm failed
!>                to compute an eigenvalue while working on the submatrix
!>                lying in rows and columns INFO/(N+1) through
!>                mod(INFO,N+1).
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

Modified description of INFO. Sven, 16 Feb 05.

Contributors:

Jeff Rutter, Computer Science Division, University of California at Berkeley, USA

Definition at line 197 of file zheevd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK