table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zggqrf.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zggqrf.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zggqrf.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZGGQRF (n, m, p, a, lda, taua, b, ldb, taub,
work, lwork, info)
ZGGQRF
Function/Subroutine Documentation¶
subroutine ZGGQRF (integer n, integer m, integer p, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) taua, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) taub, complex*16, dimension( * ) work, integer lwork, integer info)¶
ZGGQRF
Purpose:
!> !> ZGGQRF computes a generalized QR factorization of an N-by-M matrix A !> and an N-by-P matrix B: !> !> A = Q*R, B = Q*T*Z, !> !> where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix, !> and R and T assume one of the forms: !> !> if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N, !> ( 0 ) N-M N M-N !> M !> !> where R11 is upper triangular, and !> !> if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P, !> P-N N ( T21 ) P !> P !> !> where T12 or T21 is upper triangular. !> !> In particular, if B is square and nonsingular, the GQR factorization !> of A and B implicitly gives the QR factorization of inv(B)*A: !> !> inv(B)*A = Z**H * (inv(T)*R) !> !> where inv(B) denotes the inverse of the matrix B, and Z**H denotes the !> conjugate transpose of matrix Z. !>
Parameters
N
!> N is INTEGER !> The number of rows of the matrices A and B. N >= 0. !>
M
!> M is INTEGER !> The number of columns of the matrix A. M >= 0. !>
P
!> P is INTEGER !> The number of columns of the matrix B. P >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,M) !> On entry, the N-by-M matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the min(N,M)-by-M upper trapezoidal matrix R (R is !> upper triangular if N >= M); the elements below the diagonal, !> with the array TAUA, represent the unitary matrix Q as a !> product of min(N,M) elementary reflectors (see Further !> Details). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
TAUA
!> TAUA is COMPLEX*16 array, dimension (min(N,M)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix Q (see Further Details). !>
B
!> B is COMPLEX*16 array, dimension (LDB,P) !> On entry, the N-by-P matrix B. !> On exit, if N <= P, the upper triangle of the subarray !> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; !> if N > P, the elements on and above the (N-P)-th subdiagonal !> contain the N-by-P upper trapezoidal matrix T; the remaining !> elements, with the array TAUB, represent the unitary !> matrix Z as a product of elementary reflectors (see Further !> Details). !>
LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
TAUB
!> TAUB is COMPLEX*16 array, dimension (min(N,P)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix Z (see Further Details). !>
WORK
!> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N,M,P). !> For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), !> where NB1 is the optimal blocksize for the QR factorization !> of an N-by-M matrix, NB2 is the optimal blocksize for the !> RQ factorization of an N-by-P matrix, and NB3 is the optimal !> blocksize for a call of ZUNMQR. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(n,m). !> !> Each H(i) has the form !> !> H(i) = I - taua * v * v**H !> !> where taua is a complex scalar, and v is a complex vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), !> and taua in TAUA(i). !> To form Q explicitly, use LAPACK subroutine ZUNGQR. !> To use Q to update another matrix, use LAPACK subroutine ZUNMQR. !> !> The matrix Z is represented as a product of elementary reflectors !> !> Z = H(1) H(2) . . . H(k), where k = min(n,p). !> !> Each H(i) has the form !> !> H(i) = I - taub * v * v**H !> !> where taub is a complex scalar, and v is a complex vector with !> v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in !> B(n-k+i,1:p-k+i-1), and taub in TAUB(i). !> To form Z explicitly, use LAPACK subroutine ZUNGRQ. !> To use Z to update another matrix, use LAPACK subroutine ZUNMRQ. !>
Definition at line 213 of file zggqrf.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |