table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zgetsqrhrt.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zgetsqrhrt.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/SRC/zgetsqrhrt.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ZGETSQRHRT (m, n, mb1, nb1, nb2, a, lda, t, ldt,
work, lwork, info)
ZGETSQRHRT
Function/Subroutine Documentation¶
subroutine ZGETSQRHRT (integer m, integer n, integer mb1, integer nb1, integer nb2, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( * ) work, integer lwork, integer info)¶
ZGETSQRHRT
Purpose:
!> !> ZGETSQRHRT computes a NB2-sized column blocked QR-factorization !> of a complex M-by-N matrix A with M >= N, !> !> A = Q * R. !> !> The routine uses internally a NB1-sized column blocked and MB1-sized !> row blocked TSQR-factorization and perfors the reconstruction !> of the Householder vectors from the TSQR output. The routine also !> converts the R_tsqr factor from the TSQR-factorization output into !> the R factor that corresponds to the Householder QR-factorization, !> !> A = Q_tsqr * R_tsqr = Q * R. !> !> The output Q and R factors are stored in the same format as in ZGEQRT !> (Q is in blocked compact WY-representation). See the documentation !> of ZGEQRT for more details on the format. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. M >= N >= 0. !>
MB1
!> MB1 is INTEGER !> The row block size to be used in the blocked TSQR. !> MB1 > N. !>
NB1
!> NB1 is INTEGER !> The column block size to be used in the blocked TSQR. !> N >= NB1 >= 1. !>
NB2
!> NB2 is INTEGER !> The block size to be used in the blocked QR that is !> output. NB2 >= 1. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> !> On entry: an M-by-N matrix A. !> !> On exit: !> a) the elements on and above the diagonal !> of the array contain the N-by-N upper-triangular !> matrix R corresponding to the Householder QR; !> b) the elements below the diagonal represent Q by !> the columns of blocked V (compact WY-representation). !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
T
!> T is COMPLEX*16 array, dimension (LDT,N)) !> The upper triangular block reflectors stored in compact form !> as a sequence of upper triangular blocks. !>
LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= NB2. !>
WORK
!> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
LWORK
!> The dimension of the array WORK. !> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), !> where !> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)), !> NB1LOCAL = MIN(NB1,N). !> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL, !> LW1 = NB1LOCAL * N, !> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ), !> If LWORK = -1, then a workspace query is assumed. !> The routine only calculates the optimal size of the WORK !> array, returns this value as the first entry of the WORK !> array, and no error message related to LWORK is issued !> by XERBLA. !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
!> !> November 2020, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !>
Definition at line 177 of file zgetsqrhrt.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |