table of contents
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/slqt01.f(3) | Library Functions Manual | /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/slqt01.f(3) |
NAME¶
/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/LIN/slqt01.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine SLQT01 (m, n, a, af, q, l, lda, tau, work,
lwork, rwork, result)
SLQT01
Function/Subroutine Documentation¶
subroutine SLQT01 (integer m, integer n, real, dimension( lda, * ) a, real, dimension( lda, * ) af, real, dimension( lda, * ) q, real, dimension( lda, * ) l, integer lda, real, dimension( * ) tau, real, dimension( lwork ) work, integer lwork, real, dimension( * ) rwork, real, dimension( * ) result)¶
SLQT01
Purpose:
!> !> SLQT01 tests SGELQF, which computes the LQ factorization of an m-by-n !> matrix A, and partially tests SORGLQ which forms the n-by-n !> orthogonal matrix Q. !> !> SLQT01 compares L with A*Q', and checks that Q is orthogonal. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is REAL array, dimension (LDA,N) !> The m-by-n matrix A. !>
AF
!> AF is REAL array, dimension (LDA,N) !> Details of the LQ factorization of A, as returned by SGELQF. !> See SGELQF for further details. !>
Q
!> Q is REAL array, dimension (LDA,N) !> The n-by-n orthogonal matrix Q. !>
L
!> L is REAL array, dimension (LDA,max(M,N)) !>
LDA
!> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and L. !> LDA >= max(M,N). !>
TAU
!> TAU is REAL array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by SGELQF. !>
WORK
!> WORK is REAL array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !>
RWORK
!> RWORK is REAL array, dimension (max(M,N)) !>
RESULT
!> RESULT is REAL array, dimension (2) !> The test ratios: !> RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) !> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 124 of file slqt01.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |