Scroll to navigation

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/MATGEN/slarot.f(3) Library Functions Manual /home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/MATGEN/slarot.f(3)

NAME

/home/abuild/rpmbuild/BUILD/lapack-3.12.0/TESTING/MATGEN/slarot.f

SYNOPSIS

Functions/Subroutines


subroutine SLAROT (lrows, lleft, lright, nl, c, s, a, lda, xleft, xright)
SLAROT

Function/Subroutine Documentation

subroutine SLAROT (logical lrows, logical lleft, logical lright, integer nl, real c, real s, real, dimension( * ) a, integer lda, real xleft, real xright)

SLAROT

Purpose:

!>
!>    SLAROT applies a (Givens) rotation to two adjacent rows or
!>    columns, where one element of the first and/or last column/row
!>    for use on matrices stored in some format other than GE, so
!>    that elements of the matrix may be used or modified for which
!>    no array element is provided.
!>
!>    One example is a symmetric matrix in SB format (bandwidth=4), for
!>    which UPLO='L':  Two adjacent rows will have the format:
!>
!>    row j:     C> C> C> C> C> .  .  .  .
!>    row j+1:      C> C> C> C> C> .  .  .  .
!>
!>    '*' indicates elements for which storage is provided,
!>    '.' indicates elements for which no storage is provided, but
!>    are not necessarily zero; their values are determined by
!>    symmetry.  ' ' indicates elements which are necessarily zero,
!>     and have no storage provided.
!>
!>    Those columns which have two '*'s can be handled by SROT.
!>    Those columns which have no '*'s can be ignored, since as long
!>    as the Givens rotations are carefully applied to preserve
!>    symmetry, their values are determined.
!>    Those columns which have one '*' have to be handled separately,
!>    by using separate variables  and :
!>
!>    row j:     C> C> C> C> C> p  .  .  .
!>    row j+1:   q  C> C> C> C> C> .  .  .  .
!>
!>    The element p would have to be set correctly, then that column
!>    is rotated, setting p to its new value.  The next call to
!>    SLAROT would rotate columns j and j+1, using p, and restore
!>    symmetry.  The element q would start out being zero, and be
!>    made non-zero by the rotation.  Later, rotations would presumably
!>    be chosen to zero q out.
!>
!>    Typical Calling Sequences: rotating the i-th and (i+1)-st rows.
!>    ------- ------- ---------
!>
!>      General dense matrix:
!>
!>              CALL SLAROT(.TRUE.,.FALSE.,.FALSE., N, C,S,
!>                      A(i,1),LDA, DUMMY, DUMMY)
!>
!>      General banded matrix in GB format:
!>
!>              j = MAX(1, i-KL )
!>              NL = MIN( N, i+KU+1 ) + 1-j
!>              CALL SLAROT( .TRUE., i-KL.GE.1, i+KU.LT.N, NL, C,S,
!>                      A(KU+i+1-j,j),LDA-1, XLEFT, XRIGHT )
!>
!>              [ note that i+1-j is just MIN(i,KL+1) ]
!>
!>      Symmetric banded matrix in SY format, bandwidth K,
!>      lower triangle only:
!>
!>              j = MAX(1, i-K )
!>              NL = MIN( K+1, i ) + 1
!>              CALL SLAROT( .TRUE., i-K.GE.1, .TRUE., NL, C,S,
!>                      A(i,j), LDA, XLEFT, XRIGHT )
!>
!>      Same, but upper triangle only:
!>
!>              NL = MIN( K+1, N-i ) + 1
!>              CALL SLAROT( .TRUE., .TRUE., i+K.LT.N, NL, C,S,
!>                      A(i,i), LDA, XLEFT, XRIGHT )
!>
!>      Symmetric banded matrix in SB format, bandwidth K,
!>      lower triangle only:
!>
!>              [ same as for SY, except:]
!>                  . . . .
!>                      A(i+1-j,j), LDA-1, XLEFT, XRIGHT )
!>
!>              [ note that i+1-j is just MIN(i,K+1) ]
!>
!>      Same, but upper triangle only:
!>                   . . .
!>                      A(K+1,i), LDA-1, XLEFT, XRIGHT )
!>
!>      Rotating columns is just the transpose of rotating rows, except
!>      for GB and SB: (rotating columns i and i+1)
!>
!>      GB:
!>              j = MAX(1, i-KU )
!>              NL = MIN( N, i+KL+1 ) + 1-j
!>              CALL SLAROT( .TRUE., i-KU.GE.1, i+KL.LT.N, NL, C,S,
!>                      A(KU+j+1-i,i),LDA-1, XTOP, XBOTTM )
!>
!>              [note that KU+j+1-i is just MAX(1,KU+2-i)]
!>
!>      SB: (upper triangle)
!>
!>                   . . . . . .
!>                      A(K+j+1-i,i),LDA-1, XTOP, XBOTTM )
!>
!>      SB: (lower triangle)
!>
!>                   . . . . . .
!>                      A(1,i),LDA-1, XTOP, XBOTTM )
!> 

!>  LROWS  - LOGICAL
!>           If .TRUE., then SLAROT will rotate two rows.  If .FALSE.,
!>           then it will rotate two columns.
!>           Not modified.
!>
!>  LLEFT  - LOGICAL
!>           If .TRUE., then XLEFT will be used instead of the
!>           corresponding element of A for the first element in the
!>           second row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.)
!>           If .FALSE., then the corresponding element of A will be
!>           used.
!>           Not modified.
!>
!>  LRIGHT - LOGICAL
!>           If .TRUE., then XRIGHT will be used instead of the
!>           corresponding element of A for the last element in the
!>           first row (if LROWS=.FALSE.) or column (if LROWS=.TRUE.) If
!>           .FALSE., then the corresponding element of A will be used.
!>           Not modified.
!>
!>  NL     - INTEGER
!>           The length of the rows (if LROWS=.TRUE.) or columns (if
!>           LROWS=.FALSE.) to be rotated.  If XLEFT and/or XRIGHT are
!>           used, the columns/rows they are in should be included in
!>           NL, e.g., if LLEFT = LRIGHT = .TRUE., then NL must be at
!>           least 2.  The number of rows/columns to be rotated
!>           exclusive of those involving XLEFT and/or XRIGHT may
!>           not be negative, i.e., NL minus how many of LLEFT and
!>           LRIGHT are .TRUE. must be at least zero; if not, XERBLA
!>           will be called.
!>           Not modified.
!>
!>  C, S   - REAL
!>           Specify the Givens rotation to be applied.  If LROWS is
!>           true, then the matrix ( c  s )
!>                                 (-s  c )  is applied from the left;
!>           if false, then the transpose thereof is applied from the
!>           right.  For a Givens rotation, C**2 + S**2 should be 1,
!>           but this is not checked.
!>           Not modified.
!>
!>  A      - REAL array.
!>           The array containing the rows/columns to be rotated.  The
!>           first element of A should be the upper left element to
!>           be rotated.
!>           Read and modified.
!>
!>  LDA    - INTEGER
!>           The  leading dimension of A.  If A contains
!>           a matrix stored in GE or SY format, then this is just
!>           the leading dimension of A as dimensioned in the calling
!>           routine.  If A contains a matrix stored in band (GB or SB)
!>           format, then this should be *one less* than the leading
!>           dimension used in the calling routine.  Thus, if
!>           A were dimensioned A(LDA,*) in SLAROT, then A(1,j) would
!>           be the j-th element in the first of the two rows
!>           to be rotated, and A(2,j) would be the j-th in the second,
!>           regardless of how the array may be stored in the calling
!>           routine.  [A cannot, however, actually be dimensioned thus,
!>           since for band format, the row number may exceed LDA, which
!>           is not legal FORTRAN.]
!>           If LROWS=.TRUE., then LDA must be at least 1, otherwise
!>           it must be at least NL minus the number of .TRUE. values
!>           in XLEFT and XRIGHT.
!>           Not modified.
!>
!>  XLEFT  - REAL
!>           If LLEFT is .TRUE., then XLEFT will be used and modified
!>           instead of A(2,1) (if LROWS=.TRUE.) or A(1,2)
!>           (if LROWS=.FALSE.).
!>           Read and modified.
!>
!>  XRIGHT - REAL
!>           If LRIGHT is .TRUE., then XRIGHT will be used and modified
!>           instead of A(1,NL) (if LROWS=.TRUE.) or A(NL,1)
!>           (if LROWS=.FALSE.).
!>           Read and modified.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 224 of file slarot.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK